
UML ASL Reference Guide
ASL Language Level 2.5
Manual Revision D

Ian Wilkie, Adrian King, Mike Clarke, Chas
Weaver, Chris Raistrick and Paul Francis
The information in this document is the property of and
copyright Kennedy Carter Limited. Permission is granted
to copy and distribute this document as long as the
content of the document is not altered in any way, this
and other copyright notices are retained in the copy and
no charge is made for the copy (other than to cover
reasonable duplication and distribution costs).
Copyright Kennedy Carter  2003





UML ASL Reference Guide

1 Introduction to ASL page 1
1.1 Manual Revision D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Footnotes in the ASL Reference Guide . . . . . . . . . . . . . . . . . . . . . . 2

2 Update History page 3

3 Basic Concepts page 5

4 ASL Syntax page 7
4.1 Overall Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 Naming Style  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Data Items in ASL Segments page 9

Data items used and produced within an ASL segment

5.1 Availability of Data Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Data Item Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4 Type Mixing Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.5 Data Item Multiplicity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Sequential Logic page 15
6.1 Switch Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 If Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 For Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.4 Loop Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.5 Nested Sequential Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
UML ASL Reference Guide for ASL Language Level 2.5 Page iii



7 Class and Object Manipulation page 19
7.1 Identity and Identifying Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Creation of Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Writing Attributes of Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.4 Reading Attributes of Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.5 Deletion of Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6 Obtaining Instance Handles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7 Manipulating Single Objects and Sets of Objects  . . . . . . . . . . . . . . 26
7.8 Ordering of Instance Handle Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Association and Generalisation page 31
8.1 Association vs. Generalisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Referential Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3 Association Navigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.4 Relationship Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5 Link Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.6 Link Deletion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.7 Generalisation Relationships Revisited . . . . . . . . . . . . . . . . . . . . . . 42
8.8 Correlated Associative Navigation. . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.9 Multivalued Association Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.10 Associate and Unassociate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Signal Generation page 47

10 Arithmetic and Logical Operations page 49
10.1 Constants and Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2 Arithmetic Calculations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3 Local Variable Assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4 Logical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Operations page 55
11.1 ASL Operations in the Context of a Domain Model . . . . . . . . . . . . 55
11.2 Defining and Calling an ASL Operation . . . . . . . . . . . . . . . . . . . . . 55
11.3 Domain Scoped Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
11.4 Class Scoped Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11.5 Object Scoped Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

12 Timer and Time Operations page 65
12.1 The xUML Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.2 Current Date and Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Page iv Kennedy Carter  2003



13 Complex Datatypes and Sets page 71
13.1 Supported Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.2 Definition of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.3 Instantiation of Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
13.4 Assembly of Sets of Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.5 Use of Loops to Perform Unpacking of Set Structures. . . . . . . . . 75
13.6 Ordering of Sets of Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
13.7 Subsets of Sets of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

14 Sets, Sequences and Bags page 79
14.1 Equality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
14.2 The Unique Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.3 The countof Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.4 Set Combination Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

15 ASL for Bridge Operations page 83
15.1 Basic Concepts and Terminology. . . . . . . . . . . . . . . . . . . . . . . . . 83
15.2 Domain Scope Within a Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
15.3 Type Mixing in Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
15.4 Types of Bridge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
15.5 Definition and Invocation of Non-Object Scoped Bridges. . . . . . . 87
15.6 Definition and Invocation of Object Scoped Bridges  . . . . . . . . . . 89
15.7 Counterpart Relationship Manipulation  . . . . . . . . . . . . . . . . . . . . 91
15.8 Definition & Invocation for a Signal Bridge . . . . . . . . . . . . . . . . . . 97

16 Native Language Inserts page 99

17 Appendix A: Requirements for an ASL page 101

18 Appendix B: The Keywords of ASL page 103

 Index page 105
UML ASL Reference Guide for ASL Language Level 2.5 Page v



Page vi Kennedy Carter  2003



thin
ced

le
The
 in

re
ely
s to
erent

ial

e of

e

1 Introduction to ASL

ASL is an implementation independent language for specifying processing wi
the context of an Executable UML (xUML) model. The language has been pla
in the public domain and may be freely used by modellers and developers.

The language is compatible with the emerging “Precise Action Semantics”
extension to the UML standard (http://www.umlactionsemantics.org)

The aim of the language is to provide an unambiguous, concise and readab
definition of the processing to be carried out by an object-oriented system.  
requirements and decisions that went into the language design are outlined
Appendix A.

Since 1993 the ASL specification has been extensively distributed to softwa
engineers working in organisations worldwide. The language has been activ
used on a large number of projects ranging from small embedded controller
large distributed database systems. These projects have used a variety of diff
techniques for mapping the ASL into the chosen software architecture and
implementation language. The translation techniques used range from fully
automatic generation to manual coding using a defined set of rules. Target
languages have included c, c++, Objective c, Ada, Java, Fortran, SQL and
proprietary languages.

The ASL definition is independent of any particular implementation.  Potent
users should therefore check carefully the level of support offered by any
particular CASE tool or code generator, before embarking on large-scale us
the language.

1.1 Manual Revision D

This revision makes further clarification of terminology and document re-design.

1.2 Feedback

If you have any comments or questions regarding ASL or this manual pleas
e-mail them tomethod@kc.com.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 1



Introduction to ASL

tive
lin
nd

on,

G

en
1.3 Acknowledgements

The authors would like to thank the many people who have provided construc
criticism and feedback over the years. In particular we would like to thank Co
Carter, Paul Francis, Chris Raistrick, John Wright, Jeff Terrell, David Hawes a
Andy Land of Kennedy Carter, Chas Weaver of Rational Software Corporati
Steve Arnott, Phil Reynolds and Don Stewart of Marconi Communications,
David Stone and Tim Wilson of Simoco, Dick Taylor and Craig Anderson at M
Rover, Terry Ruthruff and Bary Hogan of Lockheed Martin Tactical Aircraft
Systems, Eric Mintz of Bear Stearns, Tony Bloomfield of BAE Systems, and
Bryan Hawkins of Domeon Software.

If we have omitted anyone from this list then please accept our apologies.

1.4 Footnotes in the ASL Reference Guide

Footnotes are used in the ASL Reference guide to clarify the use of ASL wh
used with Kennedy Carter’s iUML tool. They are highlighted with the iUML
logo .
Page 2 Kennedy Carter  2003



ase
2 Update History

Document
Version

Date Comments

1.0 Draft 16/09/93 Stopped with “Navigation Processes”.

1.1 Draft 07/10/93 Changes to write accessor syntax - position of “where” clause changed to incre
clarity.
Addition of relationship operations, transforms signals.
More detail on conditions and constants.
Details of overall syntax.

1.2 03/11/93 Addition of “ordered by” and “sizeof”.

1.3 24/11/93 Specific mention of signal generation with instance handles.
Timers.

1.4 05/01/94 Use of association classes in relationship creation and navigation.

1.5 10/01/94 Reference to M-(M:M) associations.
Minor Corrections.
Extensions to the reserved word list.
Document title changed.

2.0 15/02/94 Major Revision of document structure.
Additional Relationship Navigation facilities.
Revised syntax for one-of, size-of, only directives.

2.1 03/03/94 Minor Corrections.

2.2 04/05/94 Clarification of association class creation/deletion rules.
Introduction of “associate” and “unassociate” constructs.
Addition of “current_time” and “current_date” keywords.
Minor Corrections.

2.3 19/05/94 Correction to procedure parameter type declarations.
Inclusion of correlated associative navigation.
Table of contents in reference manual.

2.4 11/01/95 Incorporation of complex data types and set manipulation.
Withdrawal of sets of single data item.
Fix to problem of assigning constant enumeration values.
Significant changes to timer use.
Withdrawal of “with” clause on “generate”.
Withdrawal of “single instance specification” idea for “find”

2.4 Rev A 01/05/96 Changes to document content and structure to improve usability.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 3



Update History
2.5 06/12/96 Introduction of formalised definition and invocation of synchronous operations
and support for counterpart instances in bridges.

2.5 Rev A 24/06/00 Clarification of meaning of equality for sets and structures.  Explanation of
polymorphic operations.

2.5 Rev B 20/02/01 Adjustment to terminology for UML compatibility and Precise Action Semantics
submission.

2.5 Rev C 23/07/01 Further clarification of terminology and document re-design.

2.5 Rev D 16/12/02 Addition of section on Multi-valued Association Classes
Addition of “Associate” and Unassociate” statement definitions.
Other minor typographical fixes

Document
Version

Date Comments
Page 4 Kennedy Carter  2003



ting
se
ceipt
ond
ed.

tly

oses
3 Basic Concepts

ASL is a language providing:

• Sequential Logic

• Access to the data described by the Class Diagram

• Access to the data supplied by signals initiating actions

• The ability to generate signals

• Access to timers

• Access to synchronous operations provided by classes and objects

• Access to operations provided by other domains

• Tests and Transformations

Unlike conventional languages, there is no concept of a “main” function or
routine where execution starts.  Rather, ASL is executed in the context of a
number of interacting state machines, all of which are considered to be execu
concurrently and in the context of synchronous call stacks invoked from the
state machines or directly from outside the system. Any state machine, on re
of a signal (from another state machine or from outside the system) may resp
by changing state. On entry to the new state, a block of processing is perform
This processing can, in principle1   execute at the same time as processing
associated with another state machine.

ASL is organised in to “Segments” each of which is a sequential set of ASL
statements with a local data scope.  An ASL segment corresponds to a
“Procedure” in the proposed “Precise Action Semantics for the UML” curren
being submitted to the OMG.

In xUML ASL segments can be used to define:

• The processing to be carried out on entry to a state

• The processing to be carried out by a method behind an operation

• The startup sequence for a system either for test or for target system purp

1.Whether this occurs in practice depends on the nature of the software and hardware architectures used to implement the
system.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 5



Basic Concepts

eeds
es.

n of

n of
• The processing to be carried out by test methods for simulation purposes

• The processing to be executed in bridges providing the mapping between
domains

The execution rules for a segment are as follows:

• Execution commences at the first ASL statement in the segment and proc
sequentially through the succeeding lines as directed by the logic structur

• Execution of the segment terminates when the last ASL statement is
completed.

• The only external data available to the ASL segment is:

• Signal data supplied with the signal or operation call that caused executio
the ASL segment

• Attributes of classes as defined in the Class Diagram

• There are no “global” data other than those detailed in the Class Diagram

• Local variables created within the segment go out of scope when executio
the segment ends
Page 6 Kennedy Carter  2003



s of

n be
 a

as

ment

tly
ith

tion.
4 ASL Syntax

This section describes the syntax of ASL, providing explanation and example
ASL usage.

4.1 Overall Structure

An ASL segment consists of a number of ASL statements. Each statement ca
either a simple statement (such as an access to the attributes of a class) or
sequential logic structure (such as a loop).

ASL statements are terminated by the use of a new line. A “\ ” character can be
placed at the end of the line to indicate that the following line is to be included
part of the same ASL statement.

4.2 Comments

Comments may be inserted by use of the “#” character at any point in the line.
When this character is detected, the rest of the line is considered to be a com
and ignored.

Multi-line comments may be created by surrounding the lines by “#{ { ” and “}# ”.
In this case there should be no characters on a line before the “#{“ or after the
“ }#”. Multiline comments do not nest. Care should be taken not to inadverten
start a multi-line comment when commenting out ASL statements that start w
a set definition “{ …”.

4.3 Names

ASL statements are composed from:

• ASL Keywords

• Logical and Arithmetic Operators

• Names of xUML Elements (Data items, Classes, Associations,
Generalisations, Signals and Enumeration Values).

ASL keywords may be represented in upper and lower case in any combina
In this document ASL keywords and symbols are shown incourier bold font.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 7



ASL Syntax

[0-

se of
the

t

as a

or
The names of xUML elements must conform to the following rules:

• Names are case sensitive

• Names may contain only the characters [a-z][A-Z][0-9][_]2

• Names must not start with an underscore character [_]

• Names must not begin or end with a numeric character [0-9]

• Names must not conflict with the keywords of ASL3

• Class or terminator “Key Letters” must not contain any numeric character 
9]

4.4 Naming Style

Since, in general, explicit type statements are not required in ASL (see the
discussion of Data Types in Section 6), great care must be taken with the u
names of data items. Specifically, within the scope of one action or operation,
same namemust not be usedfor different data items or data items of a differen
type. Names are statically typed by first appearance.

For example:

Dog = find  Dog where  name = “Fido”

is invalid, since “Dog” is used both as an instance handle (of class Dog) and
class name.

Thus, local variables must not have the same name as:

• A class

• A terminator

• An attribute

• An association (e.g. R7)

•  A Generalisation (e.g. R8)

• A counterpart association (e.g. CPR1)

• A signal parameter

Additionally, the following is very unlikely to be valid:

if  my_dog.name = “Fido” then
sex_or_colour = my_dog.colour

else
sex_or_colour = my_dog.sex

endif

sincesex_or_colour  is probably of more than one data type (and also po
modelling!).

2.Specifically, spaces are not permitted. Since spaces are allowed in xUML model element names language implementations
must provide some suitable mapping. In iUML all spaces are replaced by underscore characters when building a simulation or
target code. ASL that references these names must therefore use the underscore character.
3.See Appendix B for a list of the keywords of ASL.
Page 8 Kennedy Carter  2003



 of a

a

5 Data Items in ASL Segments

Data items used and produced within an ASL segment

The ASL for a segment has access to, and can produce certain data items.

5.1 Availability of Data Items

Data items available at the start of and during execution of a segment:

• Signal parameters of the signal that caused entry to the state (in the case
segment attached to a state)

• Input parameters to the operation defined by this segment (in the case of 
segment for an operation)

• The instance handle “this ” (in an object scoped segment)

• Parameters returned by operation invocations made by this segment

• Values of attributes of classes in the Class Diagram

• Local variables (created by ASL statements within the segment)

Data items produced during action:

• Local variables

• Values of attributes of classes in the Class Diagram

• Signal parameters supplied to signal generation statements

• Operation parameters supplied to operation invocations

Data items have three properties:

• Name

• Data type

• Multiplicity

Taking these in turn:
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 9



Data Items in ASL Segments

ata

pes

her
s
 be

nce.

t

in
 are

d to
les

.

5.2 Data Item Names

These must conform to the rules of ASL names defined in a previous section. D
item names must not conflict with the name of any class or terminator.4

5.3 Data Types

In order to support ASL as a rigorous process modelling formalism, the data ty
of class attributes in the xUML model must be specified rigorously.

Note that this is not a question of “design” polluting the analysis model. Rat
that the choice of “Integer”, for example, as the data type of “Shipment ID” i
simply reflecting the fact that in the problem domain, the “Shipment ID” can
1, 2, 3... etc. How such types are implemented is a software design issue.

In ASL every data item has a type that is statically determined by first appeara
ASL allows the following “base types” for attributes of classes:

Real Integer Text
Date Time_of_Day
Boolean

In addition analysts can define constrained versions of these (“User Defined
Types”).

Enumeration types are permitted; they will always be user-defined and mus
always be provided with user-specified valid values. For example
traffic_light_colour_type  having the values‘ Red’ , ‘ Amber’ ,
‘ Green ’ .

In addition to these types, local variables, signal parameters and operation
parameters can be of one of the following types:

• instance handle
This is a reference to an object

and:

• sets of structures
Which is a complex data type covered in more detail in a later section

Finally, any data item can also be of “deferred” type. This means that the ASL
this domain does not implement the type. Instead all operations on that type
passed through to another domain5 .

Notes:

• Enumerations, Instance handles and Sets of Structures are not considere
have a “base type”. This is important when interpreting the type mixing ru
(see below).

• Attributes of classescannotbe of type “instance handle” or “set of structures”

4.iUML Simulator requires all names to be unique within a domain, with the exception that the same attribute name can be used
in multiple classes. Note also that no item may have the same name as a domain key letter. (See the section on “Bridges” for a
discussion of domain key letters).
5.Currently, iUML Simulator supports the implementation of deferred types in implementation domains only.
Page 10 Kennedy Carter  2003



e
pt

ore

nd

for a
ss.
.

ly
• Strictly speaking an item is not of type “instance handle”, but rather of typ
“instance handle for class <x>”, where <x> is the name of a class. Any attem
to use an instance handle for one class in the context of another is theref
regarded as a compile time error.

• In any non-creation action in any state machine, a special instance handle
called “this ” is always available. This is always set to the object that is
executing the current action. The value of “this ” cannot be changed by an
action. “this ” is not available in creation states, nor in some operations a
bridges (see sections“14 Sets, Sequences and Bags” on page 79and“15 ASL
for Bridge Operations” on page 83 for more details).

• Typed instance handles can exist as sets or single values. A set of handles
particular class is considered to be different to a single handle for that cla
This has an impact that is considered in the section on multiplicities below

• Structures cannot exist as single items but must always be sets.

5.4 Type Mixing Rules
1. The following rules define the permitted level of type mixing in ASL:

2. With few exceptions 6 , there are no explicit type declarations in ASL. All data
items are implicitly typed by the value assigned to them on their first use within
a segment.

3. Except as allowed for in other rules, a data item of a particular type must not be
used in a context where a different type is expected. To do so is considered to
be a compile time error. There is no explicit type casting available.

• A context where a particular type is expected can be:

• any use of a typed instance handle

• actual operation call parameter

• actual signal generation parameter

• actual bridge call parameter

• values supplied to “with” clause on “create”

• values supplied to “where” clause on “find”

• assignment to an attribute

• assignment to a local data item the type of which has been previous
determined

4. Rule 2 is relaxed in that a base type can always be used in a context where a

constrained version of that type is expected7 .

5. If, at run time, the constraint on a type is violated by use of Rule 4 then this is

considered to be a run time error.8

6. Types may be mixed in an arithmetic expression, provided that all the base
types involved are either Integer  or Real .

7. The result of an arithmetic expression is always Integer  base type unless

6. The exceptions to this are procedure and bridge definitions, assignment of constants to enumerated types and assembly of
sets of structures.
7.iUML Simulator actually allows use of a User Defined Type in a context where another type is expected as long as the base
types agree. This will be tightened up in future releases. Note that the Configurable Code Generator (CCG) has much stricter
type checking than iUML Simulator.
8.iUML Simulator does not perform run-time constraint checking.
UML ASL Reference Guide for ASL Language Level 2.5 Page 11



Data Items in ASL Segments

 of

tures

s

n

vice-
urns

 local

e

any of the operands are Real  base type, division is involved or raising to a
non-integer or negative power is involved. In this case the result will be a Real

base type9 .

8. Constants are considered to be of the corresponding base type.

9. Type mixing of operands is not permitted in a binary logical expression.

10. Any data items in scope when a $USE directive is encountered automatically
revert to base type. This allows implicit casting in bridges by virtue of rule 4.
See “15 ASL for Bridge Operations” on page 83.

11. Types that are not considered to have a base type (enumerations, typed
instance handles and sets of structures) cannot ever be used in a context

where another type is expected.10

5.5 Data Item Multiplicity

Data items can be single valued, or can be sets. A set is simply a collection
values and is analogous to an array, vector or tuple in other languages.

In ASL, only instance handles and structures can be the basis of sets. Struc
are described in“Complex Datatypes and Sets” on page 71. Note that a set of
instance handles for class <x> is of a different data type to a set of structure
composed of a single member of type instance handle for class <x>.

Single valued data items are written simply using their name, for example a
assignment to a local variable is written:

<local variable> = <ASL statement that returns a single value>

Set valued items must be explicitly noted by using the brace characters “{} ”,
thus:

{<local variable>} = <ASL statement that returns a set>

In ASL, sets cannot be used in a context where a single value is expected and
versa. Throughout this manual, it will be made clear whether a statement ret
a set or a single value.

Various functions may be used to manipulate sets:

<local variable> = find-one { <set of instance handles> } 11

Chooses an arbitrary object from the set and assigns it to the single valued
variable.

<local variable> = countof { <set of instance handles> }

Finds the number of elements in the set and assigns it to the local variable

<local variable> = find-only { <set of instance handles> } 12

At run time, if the{<set of instance handles>} contains one and only one value,
then this will be assigned to the single valued local variable. If more than on
value exists in the set, a run time error will have occurred.

9.iUML Simulator does not support mixing of Integer and Real types in an arithmetic expression.
10.Currently, iUML Simulator allows assignment of enumerations of different types. This will work correctly if the enumerations
have been defined in the correct way to support the required mapping.
11.“one-of ” is equivalent to “find-one ” and is due to be removed from subsequent language level versions.
12.“only ” is equivalent to “find-only ” and is due to be removed from subsequent language level versions.
Page 12 Kennedy Carter  2003



been
Note that at run time:

• A single valued data item may contain the value “UNDEFINED”. This would
happen, for example, when accessing an attribute whose value has not yet

set13 .

• A set may be empty. The “countof ” function will return the value 0. Any
attempt to access a member of the set (e.g. using “find-one ”) will result in
the valueUNDEFINED.

13. Whether such a value is actually implemented and testable at run time is architecture dependent. iUML Simulator supports
UNDEFINED only for instance handles.
UML ASL Reference Guide for ASL Language Level 2.5 Page 13



Data Items in ASL Segments
Page 14 Kennedy Carter  2003



ASL
6 Sequential Logic

6.1 Switch Statement

Depending on the outcome of a test, at most one of a number of groups of 
statements (referenced by a switch clause) will be executed.

Syntax:

switch  <switch variable>
case  <value 1>

# Executed if <switch variable> = <value 1>
<ASL statements>

case  <value 2>
# Executed if <switch variable> = <value 2>
<ASL statements>

...
default

# Executed if no other clause has executed
<ASL statements>

endswitch

Where:

<switch variable>  is a data item that can be:

Notes: 1. The switch execution terminates at the end of the executed case clause. (i.e.
Execution does not continue through to the next clause, as is the case in “C”).

2. There must be at least one case  clause.

3. The single default  clause is optional. (Note that if omitted, there may be no
clause that is executed at run time.)

single valued local variable of a type for which “=” is defineda

(See 10.4 “Logical Conditions” on page 53)

a.iUML Simulator supports only the use of integer or enumeration as a loop local variable.

single valued signal parameter

single valued <instance handle>.<attribute>

single valued operation input parameter
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 15



Sequential Logic

l be

mber
ndle
such
6.2 If Statement

Depending on the result of a test, one of up to two groups of statements wil
executed.

Syntax:

if  <condition> then
# Executed if <condition> is TRUE
<ASL statements>

endif

or:

if  <condition> then
# Executed if <condition> is TRUE
<ASL statements>

else
# Executed if <condition> is FALSE
<ASL statements>

endif

Where <condition> is a Boolean value or logical condition14 , as described in
“Logical Conditions” on page 53.

6.3 For Loop

There are two forms offor  loop defined in ASL. The first applies to sets of
instance handles where one or more ASL statements will be executed a nu
of times, with a local variable being assigned to each value in the instance ha
set in turn. The second applies to sets of structures, and is used to unpack 
sets. The former is explained below, the latter is explained in“Sets, Sequences
and Bags” on page 79.

Syntax:

for  <loop local variable> in  {<set of instance handles>} do
<ASL statements using loop local variable>

endfor

or:

for  <loop local variable> in  {<set of instance handles>} do
<ASL statements using loop local variable>
<break statement>

endfor

Where:

14. iUML Simulator does not support the comparison of instance handles in an “if” statement.

<break statement> is breakif  <condition> a

or: break

a. iUML Simulator does not support the comparison of
instance handles in a “breakif” statement.
Page 16 Kennedy Carter  2003



Notes: 1. Each iteration round the loop will assign <loop local variable> to a successive
value in the <set of instance handles> until all the elements have been used.

2. The order of obtaining the members of the set will be indeterminate unless the
set has been constructed with explicit ordering.

3. The <break statement> will cause termination of the loop as follows:

4. The “breakif ” statement will cause termination of the loop if <condition> is
true

5. The “break ” statement will always cause termination of the loop

6. Following the execution of a break, execution will continue with the statement
immediately following the “endfor ”.

7. The <break statement> is optional

8. The <break statement> may appear anywhere in the loop (for brevity, this
possibility has been omitted from the syntax above).

9. The <break statement> may appear multiple times in the loop.

10. The value of <loop local variable> will remain valid after termination of the loop
(either by execution of a <break> or by exhaustion of the {<set of instance
handles>}).

11. No <asl statement> within the loop may change the value of the <loop local
variable>.

12. No <asl statement> within the loop may change the contents of the {<set of
instance handles>} that is the subject of the loop.

13. If {<set of instance handles>} is empty, then the ASL within the loop will not be
executed, and the value of <loop local variable> will be UNDEFINED.

14. The type of the members of {<set of instance handles>} determines the type of
<loop local variable>. Thus, by virtue of the typing rules defined earlier, <loop
local variable> may not be used later in a context expecting or defining a
different type (for example, in a subsequent loop with a different type).
UML ASL Reference Guide for ASL Language Level 2.5 Page 17



Sequential Logic

nts
6.4 Loop Statement

A general purpose loop that will repeatedly execute a group of ASL stateme
until a break is explicitly executed.

Syntax:

loop
<ASL statements>
<break statement>

endloop

Where:

Notes: 1. This will loop indefinitely, until <break statement> causes a break, at which
point execution will continue at the statement immediately following the
“endloop” statement.

2. The <break statement> will cause termination of the loop as follows:

3. The “breakif ” statement will cause termination of the loop if <condition> is
true

4. The “break ” statement will always cause termination of the loop

5. The <break statement> is mandatory

6. The <break statement> may appear anywhere in the loop.

7. The <break statement> may appear multiple times in the loop.

8. To conform to the xUML rules for segment execution, the analyst must
guarantee that a break is executed at some finite time after the start of loop
execution.

6.5 Nested Sequential Logic

Sequential logic may be nested to any depth.  For example:

for  <local variable> in  {<set of instance handles>} do
if  <condition 1> then

<ASL statements>
loop

<ASL statements>
breakif  <condition 2>

endloop
<ASL statements following break>

else
<ASL statements>

endif
endfor

Notes: 1. If <condition 2> is true, the “breakif ” statement will cause execution to
continue at the line immediately following the inner endloop statement, i.e.
“<ASL statements following break>”.

<break statement> is breakif  <condition> a

or: break

a. iUML Simulator does not support the comparison of
instance handles in a “breakif” statement.
Page 18 Kennedy Carter  2003



y of
bly

k or
 the

in
to
o
the

ill
7 Class and Object Manipulation

7.1 Identity and Identifying Attributes

In executable UML there is a very strong emphasis on modelling the identit
concepts in the problem domain. This identity is captured in the form of (possi
multiple alternate) identifiers each composed of one or more identifying
attributes. ASL uses this concept of identity in several ways as a cross-chec
constraint check.  For example, if a Class has had an identifier defined then
values for it must be specified when an object of the class is created.

It is recognised, however, that in many problem domains identity is often
arbitrary and there is less benefit in explicitly modelling it. ASL supports this
two ways. First the “create unique” operation will automatically assign values
explicitly modelled arbitrary identifying attributes and secondly, if there are n
identifying attributes modelled then the issues of identity can be ignored by 
analyst when writing ASL.

7.2 Creation of Objects 15

Creation of an object is achieved by use of the “create ” statement.  Execution
of this statement will cause the xUML architecture to create the object, which w
then be visible to other ASL statements such as “find ”.

Syntax:

<instance handle> = create  <class> with  <attribute assignments>

or:

<instance handle> = create unique  <class>

or:

<instance handle> = create unique <class> with <attribute assignments>

15. iUML Simulator requires that the name of the state attribute of an active class is always “Current_State” (which is the default
name provided by the core iUML tool).  All ASL which accesses this attribute must use this name.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 19



Class and Object Manipulation
Where:

Notes: 1. Attributes in <attribute assignments> will be set with the values given in the
assignments.

2. When the “create ” form is used, <attribute assignment> must specify
assignment of all identifying attributes of all identifiers for the class.  Failure to
do so is regarded as compile time error.  This applies even if the attributes
concerned are also referential.

3. Any attributes of <class> that are not explicitly set by <attribute assignments>

are considered to have the value UNDEFINED16 .

4. When the “create unique ” form is used, any identifying attribute in any
identifier not explicitly set by <attribute assignments> will be given a suitable

unique value automatically by the xUML architecture.17

5. The <instance handle> returned is the handle of the newly created object. This
value may be ignored.  In this case there would be no “<instance handle> =”

clause.18

6. If the “create ” form is used, and an object with the same identifying values
already exists, then the handle returned will have the value

ALREADY_DEFINED.19

7. If the architecture fails to create the object for some other reason, then the

instance handle returned will be ERROR. 20 21

Examples: nextTrack = create unique  Track with  position = detectedPosition

create Disk_Transfer with  source = start \
& destination = end

<class> is the name of a class

<attribute assignments> take the form:

<attribute name 1> = <value> & \

<attribute name 2> = <value> ....

16. Whether such a value is actually implemented and testable at run time is architecture dependent. iUML Simulator does not
support the value UNDEFINED for any data type that can be an attribute.
17.iUML Simulator restricts the automatic assignment of identifying attributes to a single Integer attribute of the preferred
identifier. Furthermore iUML Simulator  does not allow create  and create unique  to both be used on the same class.
18.iUML Simulator  requires the assignment to the <instance handle> to be present, even if the handle is not used.
19.iUML Simulator  does not support ALREADY_DEFINED.  It is planned to withdraw this value in a future release of ASL.
20. Failure of the software architecture is a large and complex subject matter, and should be addressed in the architectural
domain.  However, such failures may need to be responded to in an application and so this return value is included.
21.iUML Simulator  does not support the return of ERROR.  It is planned to withdraw this value in a future release of ASL.
Page 20 Kennedy Carter  2003



sor

n the
7.3 Writing Attributes of Objects

Attributes of objects may be set to specific values by use of the write acces
construct.

Syntax:

<class>.<attribute list> = <value list> where  <class condition>

or:

<instance handle>.<attribute list> = <value list>

or:

{<instance handle set>}.<attribute list> = <value list>

This takes the values in the <value list> and assigns them to the attributes i
<attribute list> for the objects specified by <instance handle> or by <class>
where  <class condition>.  Where there is {<instance handle set>} then
assignment is made for every member of the set.22

Where:

Notes: 1. If the attribute list contains more that one value (the “[..,..,..]” form) then
matching with the value list will be on the basis of position within the list. If the
two lists have a different number of elements, or there is a type mismatch then
this will be regarded as compile time error.

2. It is explicitly disallowed to make the <value list> a read accessor; for example,
the following is invalid:

new_dog.owner_name = old_dog.owner_name

3. Changing the value of any attribute that is part of any identifier of the class is
not allowed since this is equivalent to deletion of one object and creation of
another. An attempt to change such an attribute value is a compile time

error.23

4. Setting the value of the status attribute of an active class should be avoided
except when executing a “create ” operation.

22. Assignment to members of a set of handles is not supported in iUML Simulator.

<class> is a logical condition based on attributes of <class>

<class conditions> is a logical condition based on attributes of <class>

<attribute list> is <name of attribute>

or [ <name of attribute 1>, <name of attribute 2>...]

<value list> is <value>

or [ <value 1>, <value 2>, ...]

<value> is <data item> available to the segment

23. This is not checked by iUML Simulator.
UML ASL Reference Guide for ASL Language Level 2.5 Page 21



Class and Object Manipulation
Example1:
# “Track” is a class with attributes “track_id”, “position”
# and “threat”
# (Assume new_id, threat_level and detected_postion are signal data
# or local variables)
# First, create and new object ...
new_track = create  Track with  track_id = new_id

# Now set an attribute using the returned instance handle
new_track . position = detected_position

# Now set an attribute using class specification
Track . position = detected_position where  track_id = new_id

Example 2:

# Example with multiple attributes

Track .[ position,threat ] = [ detected_position ,  threat_level ] where  track_id = new_id
# The above example is equivalent to the following two statements:

Track . position = detected_position where  track_id = new_id
Track . threat = threat_level where  track_id = new_id
Page 22 Kennedy Carter  2003



bles
7.4 Reading Attributes of Objects

Attribute values for objects of a class may be read and assigned to local varia
as follows:

Syntax:

<local variable list> = <class>.<attribute list> where <class condition>

or:

<local variable list> = <instance handle>.<attribute list>

Where:

Notes: 1. If class specification (<class> .... where <condition>) returns a set, then this is
regarded as a run time error. If sets of data are required while reading attribute
values then this must be explicitly managed using sets of structures (see later).

2. If the attribute list contains more that one value (the “[ ..,..,..] ” form) then
matching with the local variable list will be on the basis of position within the list.
If the two lists have a different number of elements then this will be regarded as
a compile time error.

Examples: # Read a single attribute value (NB “John” must be unique).
johns_age = Person . age where  name = “John”

# Read two attributes at a time
[ johns_age , johns_height ] = Person .[ age,Height ] where name = “John”

# Example using an instance handle
# Create new object and get handle ...
new_person = create  Person with name = new_name

# Later ... Use the instance handle to access an attribute
new_age = new_person.age

<class> is the name of a class

<class conditions> is a logical condition based on attributes of <class>

<attribute list> is <name of attribute>

or [<name of attribute 1>, <name of attribute 2> ...]

 <local variable list> is <local variable>

or [ <local variable 1>, <local variable 2> ...] a

a. iUML Simulator does not support the [..,..] form.
UML ASL Reference Guide for ASL Language Level 2.5 Page 23



Class and Object Manipulation

t of
7.5 Deletion of Objects

Objects may be deleted by means of the following:

Syntax:

delete  <instance handle>

or:

delete  {<set of instance handles>}

or:

delete  <class> where  <class condition>

Will delete the object or objects specified by the <instance handle>, the {<se
instance handles>} or by the class specification (“<class>where  <class
condition>”).

Notes: 1. When an object is deleted, it is no longer available to the domain where the
class is defined.

2. If the instance handle set is used or the class specification specifies more than
one object, then all the objects specified will be deleted.

3. Deletion of an object is not sufficient to specify deletion of attached
relationships. Certain types of architectures may fail if such “dangling”
relationships are used at run time. The analyst must explicitly delete
relationships before deleting the participating objects, otherwise this is
considered to be a run time error (See 8 “Association and Generalisation” on
page 31).

4. Deletion of “this” is only allowed in ASL segments where the scope is object-
based - i.e. in object-based operations and in state entry actions (in fact strictly
only for those states declared in the xUML model to be a terminal state). An
attempt to do otherwise is regarded as a compile time error.

Examples: # Delete a single fully specified instance of “Dog”
# (Dog.name is the entire identifier of “Dog”)
delete  Dog where  name = “fido”

# This line will cause deletion of every object
# referenced in the set {expiredLicences}
delete { expiredLicences }
Page 24 Kennedy Carter  2003



ute
7.6 Obtaining Instance Handles

Instance handles can be explicitly obtained by using the find statement:

Syntax:

{<instance handle set>} = find  <class> where <class condition>

or:

{<instance handle set>} = find {<set of existing instance handles>} where <class condition>

or:

{<instance handle set>} = {<set of existing instance handles>} where  <class condition>

All of the above will return a set of handles to instances of <class> whose attrib
values match the conditions specified by <class condition>.

or:

{<instance handle set>} = find-all  <class>

Returns a set of handles to all instances of <class>.

Where:

Notes: 1. The <class condition> is specified as a logical condition using attributes of the
class being found.

2. The above forms of “find ” always return a set of instance handles, even if
there is only one member at run time.

Examples: # Find employees who are close to retirement
{ retiring_employee } = find  Employee where  age > 63

# Get all company cars
{ car } = find-all  Company_Car

# A more complex condition, used to get a set of handles
{ retiring_male } = find  Employee where  age > 63 & sex = ‘ Male ’

# Now use find again to further subset the handles
{ local_retiring_male } = find { retiring_male } \

where  location = “London”

{ <instance handle set>} is a set of handles for those instances of <class> that match the criteria
specified by <class condition>

<class> is the name of the class

<class condition> is a logical condition that specifies a set of instances of <class>

{ <set of existing instance handles>} is a set of instance handles to <class> that is used to form a sub-set of
instance handles
UML ASL Reference Guide for ASL Language Level 2.5 Page 25



Class and Object Manipulation

by
7.7 Manipulating Single Objects and Sets of Objects

The “find ” statement always returns a set of instance handles. However,
operations are provided to reduce this to a single value:

•  find-one

•  find-only

Use of “find-one”

Syntax:

<instance handle> = find-one <class>

or:

<instance handle> = find-one <class> where <condition>

or:

<instance handle> = find-one {<set of instance handles>}

or:

<instance handle> = find-one {<set of instance handles>} where <condition>

Each of the above will return a single arbitrary object from the set specified 
“<class>” or “<class>where <condition>” or “{<set of instance handles>}”

Notes: 1. If there are no objects in the set specified by “<class> where <condition>”, then
<instance handle> will be set with the value UNDEFINED.

Example: # Get an arbitrary disk transfer with the correct status
jobToDo = find-one  Disk_Transfer where  status = ‘ ReadyForRobot ’
Page 26 Kennedy Carter  2003



”

are
Use of “find-only”

Syntax:

<instance handle> = find-only  <class>

or:

<instance handle> = find-only  <class> where  <condition>

or:

<instance handle> = find-only  {<set of instance handles>}

or:

<instance handle> = find-only {<set of instance handles>} where <condition>

Each of the above will return the only object in the set specified by “<class>
where  <condition>” or “{ <set of instance handles>} where  <condition>”.
Omitting thewhere  clause asserts either that there is only one object for the
<class> or that there is only one object in the{ <set of instance handles>} .

Notes: 1. If at run time there is not exactly one object in the set specified by the find-
only  statement then this is considered to be a run time error.

2. This construct can be used for two purposes:

• to indicate that the <condition> specifies the entire identifier of “<class>

• to allow the analyst to assert that the run time dynamics of the system 
such that there will be exactly one object that satisfies the condition.

Other Ways to Reduce a Set of Objects to a Single Object

Another way to reduce a set to a single object is to use the “for ” loop - see the
example below:

Example: # Example of use of a ‘for’ loop to access single values from a set
{ localPersons } = Person where  location = “Edinburgh”
for  thePerson in  {localPersons} do

if  thePerson . proximity = ‘Local’ then
selectedPerson = thePerson
break

endfor
if  selectedPerson !=  UNDEFINED then

<ASL statements relating to selectedPerson>
endif
UML ASL Reference Guide for ASL Language Level 2.5 Page 27



Class and Object Manipulation

 or
 be
7.8 Ordering of Instance Handle Sets

In the absence of any other specification, the “find ” statement will return a set
of instance handles with an arbitrary order. Use of the “for ” loop on such
unordered sets will access each object in an order that cannot be assumed
predicted by the analyst. If ordering is required, the following constructs can
used:

Syntax:

{<instance handle set>} = find  <class> where  <condition> ordered by  <attribute 1> \
& <attribute 2> ...

or:

{<instance handle set>} = find  <class> where  <condition> reverse ordered by  <attribute 1> \
& <attribute 2> ...

or:

{<instance handle set>} = find-all  <class> ordered by  <attribute 1> & <attribute 2> ...

or:

{<instance handle set>}  = find-all  <class> reverse ordered by  <attribute 1> & <attribute 2> ...

or:

{<instance handle>} = find  {<set of instance handles>} where  <condition> ordered by  <attribute 1> \
& <attribute 2> ...

or:

{<instance handle>} = find  {<set of instance handles>} where <condition> \
reverse ordered by  <attribute 1> & <attribute 2> ...

or:

{<instance handle>} = find {<set of instance handles>} ordered by <attribute 1> & <attribute 2> ...

or:

{<instance handle>} = find {<set of instance handles>} reverse ordered by  <attribute 1> \
& <attribute 2> ...

These will return sets of instance handles that are explicitly ordered by the
referenced attribute(s). Any use of the “for ” loop on such ordered sets will
execute in the order specified when the set was created.
Page 28 Kennedy Carter  2003



Notes: 1. The meaning of the ordering will be defined for the standard attribute base
types as follows:

2. It is considered to be a compile time error to attempt to order by attributes of a
type for which ordering is undefined.

3. In the case of “ordered by ”, the ordering will be such that the first iteration of
a “for ” loop using the set of instance handles will return the object with the
lowest value of <attribute> first.

4. In the case of “reverse ordered by ”, the ordering will be such that the first
iteration of a “for ” loop using the set of instance handles will return the object
with the highest value of <attribute> first.   The “reverse ” clause applies to all
the attributes in the list and so a mixture of forward and reverse ordering cannot
be achieved in one operation.

5. In the case where two objects have the same value of <attribute>, the order of
objects will be indeterminate.

6. In the case where the find operation is working on an existing {<set of instance

handles>}, then the find  keyword is optional24 .

7. Where ordering on multiple attributes is specified, the set will be sorted by
<attribute 1> and then within each value of <attribute 1>, by <attribute 2> and

so on25 .

Real Normal Arithmetic
Meaning

(e.g. 1.0 is less than 2.0)

Integer Normal Arithmetic
Meaning

(e.g. 1 is less than 2)

Date Normal Time Ordered
Meaning

(e.g. 2002.01.01 is less than 2002.01.02)

Time Normal Time Ordered
Meaning

(e.g. 11:00:00 is less than 13:57:00.)

Text UNDEFINED Although the meaning of these is undefined in the ASLlanguage, we do
not exclude the possibility that any particular implementation of the
language may allow the provision of “user defined” comparisons in
order to facilitate ordering on these attribute types.

Enum UNDEFINED

Boolean UNDEFINED

24.iUML Simulator does not allow the find  to be omitted when both a where  and (reverse) ordered by  clause are present.
25.iUML Simulator supports ordering on a single attribute only.
UML ASL Reference Guide for ASL Language Level 2.5 Page 29



Class and Object Manipulation
Page 30 Kennedy Carter  2003



 of

. In
re:

ion

 is
ML

s. By

es of
rent
8 Association and Generalisation

In executable UML the Class Diagram is used to capture two different kinds
UML relationship:

• Association

• Generalisation

This section describes how ASL is used to manipulate these.

8.1 Association vs. Generalisation

Within the model, the ASL describes how and when the Association and
Generalisation relationships are used to support the operation of the system
particular, the ASL specifies how and when instances of the relationships a

• Created

• Deleted

• Navigated (Read)

For these operations, ASL provides three relationship primitives:

• link

• unlink

• -> (navigate)

For associations these correspond to the CreateLinkAction, DestroyLinkAct
and ReadAssociationAction of UML.

For generalisations, the mapping is slightly different. In UML, generalisation
not the same concept as inheritance although the two are often confused. U
defines generalisations simply as a taxonomic relationship between element
contrast inheritance is an implementation mechanism that operates on a
generalisation hierarchy. In the inheritance view, a language creates instanc
the most specialised class which then inherit attributes and operations from pa
classes in the generalisation hierarchy.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 31



Association and Generalisation

e

class

s and
link
the

ter,

ch
e of

one
ial

f

Use

by
Unfortunately, this approach has problems when trying to deal with two of th
most common and powerful uses for generalisation in analysis modelling:

• Multiple Classification

• Dynamic Classification

As a result, ASL takes the approach of treating a populated superclass/sub
hierarchy as if there are separate objects which are related through the
generalisation relationship. Models must create objects in both the superclas
subclass and relate (link) them explicitly through the generalisation. Thus the
and unlink operations map on to classification and reclassification actions and
navigate replaces the automatic inheritance of attributes.

Note that some of the features of inheritance are still present in ASL. For
example, polymorphic operations are supported.

From the analysts point of view however, the situation is very simple.
Generalisations are treated just like Associations at the ASL level. In this chap
therefore we will discuss the manipulation primitives using the language of
Associations and revisit the question of Generalisations later.

8.2 Referential Attributes

As discussed in Section Identity and Identifying Attributes executable UML
emphasises the modelling of identity through identifying attributes. When su
attributes are modelled, any relationships automatically result in the existenc
referential attributes26  to model the identity of an association.

ASL allows the possibility27  of using manipulation of referential attributes in
place of the relationship primitives to manipulate relationships. For example,
could create an instance of an association by setting the value of a referent
attribute. If such an approach is used, it must not be mixed with use of the
relationship primitives within a given domain model.

If the relationshipprimitives are used:

• Referential attributes will have their values set automatically by the
implementation as the link and unlink operations are executed.

• Referential attributes must not be written to by the ASL, except when the
referential is also part of an identifier of the class (See Section Creation o
Objects).

• Referential attribute values should be read only in order to find out theirvalue.
They should not be read in order to find out facts about the related object.
the navigation primitive instead.

Over the next few pages we detail the various relationship primitives supplied
ASL.

26.Tools such as iUML manage the creation and maintenance of such referential attributes in an almost entirely automatic
fashion.
27.We know of no implementation of ASL which actually takes this approach.
Page 32 Kennedy Carter  2003



the
d to

the
rned
on.

ified
dles
e

tion

tion
8.3 Association Navigation

Association navigation is the function whereby the associations specified on
Class Diagram are read in order to determine the set of objects that are linke
an object or set of objects of interest.

Syntax:

{<instance handle set>} = <starting handle> -> <multi-valued relationship specification>

will return a set of handles of objects that are related to the object specified by
starting handle via the association specified. A set of instance handles is retu
when the relationship specification is multivalued in the direction of navigati

or:

{<instance handle set>} = {<starting handle set>} ->  <relationship specification>

will return a set of handles of objects that are related to the set of objects spec
by the starting handle set via the association specified. A set of instance han
is returned irrespective of the multiplicity of the relationship specification in th
direction of navigation.

or:

{<instance handle set>} = {<starting handle set>} ->  <relationship specification> \
->  <relationship specification> \
->  <relationship specification> \
->  ...

will return a set of instance handles of objects in the class at the final destina
of the chain of associations. A set is returned irrespective of the association
multiplicities in the chain, since the start of the navigation is from a set.

or:

{<instance handle set>} = <starting handle> ->  <relationship specification> \
 ->  <relationship specification> \

->  <relationship specification>  \
->  ...

will return a set of instance handles of objects in the class at the final destina
of the chain of associations. A set is returned ifat least one relationship
specification in the chain is multi-valued in the direction of navigation.

or:

<instance handle> = <starting handle> ->  <single-valued relationship specification>

will return thesingleinstance handle that references thesingleobject specified by
the starting handle via the association specified. This will be valid only if the
association specified issingle valued in the direction of navigation.
UML ASL Reference Guide for ASL Language Level 2.5 Page 33



Association and Generalisation
or:

<instance handle> = <starting handle> ->  <single-valued relationship specification> \
->  <single-valued relationship specification>  \
-> <single-valued relationship specification> \
->  ...

will return thesingle instance handle that references the object at the final
destination of the chain of associations. This will be valid only ifall the
associations in the chain aresingle valued in the direction of navigation.

Notes: 1. In summary, the result of these navigations is always a set unless the starting
handle is single valued and all the associations involved are single valued in the
direction of navigation.

2. It is quite possible that a particular relationship specification or chain of
specifications could return a set of handles where the same object appears
multiple times. This issue is discussed further in a later section on sets
sequences and bags.

3. If the {<starting handle set>} is empty (or is UNDEFINEDif a single value), then
the result will be considered as a run time error.

4. The returned {<instance handle>} set can be empty (or be UNDEFINED if a
single value) if any of the associations in the chain are conditional in the
direction of navigation.

5. The instance handle set {<starting handle>} can be replaced by a class

specification thus:28

Syntax:

{<instance handle set>} = <class> where <class condition> -> <relationship specification>

which is equivalent to the following:

{<starting handle set>} = find <class> where <class condition>
{<instance handle set>} = {<starting handle set>} -> <relationship specification>

or:

{<instance handle>} = <class> where <class condition> -> <relationship specification> \
->  <relationship specification> \
->  <relationship specification> \
->  ...

which is equivalent to the following:

{<starting handle set>} = find  <class> where  <class condition>
{<instance handle set>} = {<starting handle set>} ->  <relationship specification> \

->  <relationship specification> \
->  <relationship specification> \
->  ...

28.The forms of navigation involving <class> where <class condition> are not supported in iUML Simulator. We are considering
withdrawing these constructs from the language.
Page 34 Kennedy Carter  2003



be

R1).

but

the
ich

of an
8.4 Relationship Specifications

A relationship specification specifies exactly which association is required to
created, navigated or deleted. There are four forms of an relationship
specification:

Relationship Number: Syntax: R<number>

This is the number of the association as shown on the Class Diagram (e.g. 
This is sufficient to specify only the association required.

Example R3

Relationship Role: Syntax: R<number> .“ <role name> ” 29

The text that appears on the Class Diagram at the destination end of the
association (e.g. “is owned by”). This form specifies not only the association,
also thedirection that is required. This is of importance when navigating
“reflexive” associations where classes are related to themselves.

Example: R3.“ is_owned_by ”

Qualified Number: Syntax: R<number> . <class name>

This identifies not only a specific association, but the class that is the target of
association navigation. This is required, for example in order to distinguish wh
class is required when an associative class is present on the association.

Example: R3. Owner

Qualified Role: Syntax: R<number> .“ <role name> ”. <class name>

This identifies the association, the direction and which class is required.

Example: R3.“ is owned by ”. Owner

The meaning and uses of all these forms is perhaps best illustrated by use 
example.

29.iUML Simulator does not allow white space in role names. Note that iUML Modeller will automatically replace spaces with
underscores when performing a code generation dump.
UML ASL Reference Guide for ASL Language Level 2.5 Page 35



Association and Generalisation

ll
Figure 1: Class Diagram

For the Class Diagram shown, we could specify the following navigations30, each
by use of the four different relationship specification types discussed. Not a
forms are valid, however.

30.In each of the ASL navigation statements “this” refers to an instance of the ‘source’ class - for example, in the first table “this”
refers to an instance of “TrackSection”.

From “TrackSection” to “TrackOperator”

operator = this ->  R2 is valid

operator = this ->  R2.“is_owned_by” is valid

operator = this ->  R2.TrackOperator is valid

operator = this ->  R2 . “is_owned_by” . TrackOperator is valid

From “TrackOperator” to “PrivateOperator”

privateOperator = this ->  R3 is ambiguous (which subclass?)

privateOperator = this ->  R3 . PrivateOperator is valid

CurrentPointAssignment HistoricalPointAssignment

TrackSection

is preceded by
1..*

is followed by
1..*

R1

Point

Signalman

is currently
assigned

0..*

is currently
assigned to

1

R4 R6

was historically
assigned to
1..*

was historically
assigned
0..*

<<multivalued>>

TrackOperator

PublicOperator PrivateOperator

supervises
1..*

is supervised by
1

R5

R3

R2

is owned by
1

owns
1..*
Page 36 Kennedy Carter  2003



From “PrivateOperator” to “TrackOperator”

trackOperator = this ->  R3 is valid

trackOperator = this ->  R3.TrackOperator is valid

From “Signalman” to “Signalman”

supervisor = this ->  R5 is ambiguous (which direction?)

supervisor = this ->  R5.“is_supervised_by” is valid

supervisor = this ->  R5.Signalman is ambiguous (which direction?)

supervisor = this ->  R5.“is_supervised_by”.Signalman is valid

From “Point” to “Signalman” (through R4)

controller = this ->  R4 is ambiguous (which class?)

controller = this ->  R4.“is_currently_assigned_to” is ambiguous (which class?)

controller = this ->  R4.Signalman is valid

controller = this ->  R4.“is_currently_assigned_to”.Signalman is valid

From “Point” to “CurrentPointAssignment”

assignment = this ->  R4 is ambiguous (which class?)

assignment = this ->  R4.“is_currently_assigned_to” is ambiguous (which class?)

assignment = this ->  R4.PointAssignment is valid

assignment = this ->  R4.“is_currently_assigned_to”.PointAssignment is valid

From “Point” to “Signalman” (through R6)

{oldControllers} = this ->  R6 is ambiguous (which class?)

{oldControllers} = this ->  R6.“was_historically_assigned_to” is ambiguous (which class?)

{oldControllers} = this ->  R6.Signalman is valid

{oldControllers} = this -> R6.“was_historically_assigned_to”.Signalman is valid
UML ASL Reference Guide for ASL Language Level 2.5 Page 37



Association and Generalisation

nd
d

In summary the analyst must ensure that the following areunambiguously
specified:

• therelationship  (whether it be an association or a generalisation);

• thedirection  of the navigation;

• thedestination class .

The Relationship: The relationship can be specified by:

• relationship number

• relationship role31 (if unambiguous and not a generalisation)

Direction of Navigation: The direction of navigation can be specified by:

•  default (in non-reflexive associations)

•  relationship role (if unambiguous and not a generalisation)

•  class name (in non-reflexive associations)

Destination Class: The destination class can be specified by:

•  default (only for non-reflexive, non-associative associations, a
for navigations from an object of a subclass to the relate
object of the superclass in a generalisation)

•  relationship role (in non-associative associations)

• class name

From “HistoricalPointAssignment” to “Signalman”

oldController = this ->  R6 is ambiguous (which class?)

oldController = this ->  R6.“was_historically_assigned_to” is ambiguous (which class?)

oldController = this ->  R6.Signalman is valid

oldController = this ->  R6.“was_historically_assigned_to”.Signalman is valid

From “TrackSection” to “TrackSection”

{previousSections} = this ->  R1 is ambiguous (which direction?)

{previousSections} = this ->  R1.“follows” is ambiguous (which class?)

{previousSections} = this ->  R1.TrackSection is ambiguous (which direction?)

{previousSections} = this ->  R1.“follows”.TrackSection is valid

31.Whilst it is feasible to identify the relationship solely from the relationship role, the legal forms of relationship specification in
ASL do not allow this - it should be always combined with the relationship number.
Page 38 Kennedy Carter  2003



he

nce.

.

It is the responsibility of the analyst to providesufficient information to identify
all the necessary parameters. Note however, that it is quite reasonable for t
analyst to specifymore information than is required in order to make the ASL
clearer and more readable, although this may require more model maintena

Note: In the case of a reflexive association with thesame role at each end, it is
indeterminate what result will be returned by a navigation of that association
UML ASL Reference Guide for ASL Language Level 2.5 Page 39



Association and Generalisation

ing

n
e

ss
d

8.5 Link Creation

Instances of associations (UML “links”) between objects may be created us
the “link ” statement:

Syntax:

link  <source instance handle> <relationship specification> <destination instance handle>

or:

link <source instance handle> <relationship specification> <destination instance handle> \
using  <association class instance handle>

This causes the specified objects to be linked together via the specified
association, such that the new association instance may subsequently be
navigated using the “->” primitive.

Where:

Notes: 1. When a “link” is instantiated via this mechanism, the values of any non-
identifying referential attributes will be set by the architecture automatically. The
values of identifying referential attributes (i.e. those part of any identifier) will
not be set since the analyst is required to set them as part of the creation
statement for the class (See “Object Creation”). In this latter case, if at run time
the value of any identifying attribute in one object is not the same as the value
of the corresponding (identifying) referential attribute in the object being linked,

this is considered to be a run time error.32

2. Although we talk here of “source” and “destination” class, it should be
emphasised that all associations in an xUML model are “two-way”. Creation of
an instance of an association implies the subsequent ability to navigate the
association from either end. The concept of “source” and “destination” here is
used to ensure that there is no ambiguity with regard to the relationship
specification.

3. Both the source and destination handles must be single instance handles (not
sets).

4. If an attempt is made to link two objects together via the same association

twice, then this is regarded as a run time error33 .

5. The “using  <association class instance>” form must be used when an
association that involves an association class is being instantiated. Therefore,
the association class instance must have already been created before the
association is instantiated.

<source instance handle> is the single instance handle of the first object to be linked.

<destination instance handle> is the single instance handle of the second object to be linked.

<relationship specification> is the specification of the association from the source class to the destinatio
class. This can be of any of the forms described in the previous section. Not
that this specification should be framed as if navigating from “source class”
to “destination class”.

<association class instance handle> is the handle of an existing object that is to be used as the association cla
instance for this association instance. This can only be used if the specifie
association has been defined as being associative in the xUML model.

32.iUML Simulator does not check this.
33.iUML Simulator does not check for this condition.
Page 40 Kennedy Carter  2003



f

8.6 Link Deletion

Instances of associations can be destroyed using the unlink statement.

Syntax:

unlink <source instance handle> <relationship specification> <destination instance handle>

Where:

Notes: 1. Although we talk here of “source” and “destination” class, it should be
emphasised that all associations in xUML models are “two-way”. Deletion of an
instance of an association implies the subsequent inability to navigate the
association from either end. The concept of “source” and “destination” here is
used to ensure that there is no ambiguity in relation to the relationship
specification.

2. Both the source and destination handles must be single instance handles (not
sets).

3. If an attempt is made to unlink two objects which are not linked by the specified
association, then this is regarded as a run time error.

4. If an association with an association class is unlinked then the association
class instance will not be deleted. The analyst must specify this explicitly.

5. If a mandatory association is deleted, participating objects will not
automatically be deleted to remain consistent with the Class Diagram. It is the
responsibility of the analyst to ensure that the Class Diagram is respected. This
applies equally to super/subclass associations.

<source instance handle> is the single instance handle of the first object to be unlinked.

<destination instance handle> is the single instance handle of the second object to be unlinked.

<relationship specification> is the specification of the association from the source class to the
destination class. This can be of any of the forms described in the
previous sections. Note that this specification should be framed as i
navigating from “source class” to “destination class”.
UML ASL Reference Guide for ASL Language Level 2.5 Page 41



Association and Generalisation

ed,
 a
ious

, we
8.7 Generalisation Relationships Revisited

As we discussed earlier in Section 8.1, “Association vs. Generalisation,” on
page 31, ASL regards superclass and subclass objects as separate, but link
instances. That is, creating a subclass object does not automatically create
superclass object. So referring to the sample Class Diagram we used in prev
sections, if we were to create a new object of the PrivateOperator subclass
would write ASL that looked something like this:

# Create the superclass object
newTrackOperator = create  TrackOperator with  …

# Create the subclass object
newPrivateOperator = create  PrivateOperator with  …

# Create the generalisation relationship instance
link  newTrackOperator R3 newPrivateOperator
Page 42 Kennedy Carter  2003



d
e 36

he

by
jects

ted

t

8.8 Correlated Associative Navigation 34

In Section 8.4, “Relationship Specifications,” on page 35 we presented an
example of a navigation from an object through an association to the relate
association object. Referring to the sample Class Diagram in Figure 1 on pag
we had:

assignment = this ->  R4.PointAssignment

when navigating from a “Point” object (referred to by “this”), through the
association R4 to the related association object “PointAssignment”. In this
particular case, since R4 has multiplicity of 1 in the direction of navigation, t
handle returned is a single value (as opposed to a set).

If, however, we had chosen to navigate from a “Signalman” object (referred to
the instance handle “theSignalman”) through R4 to the related association ob
we would have to have write:

{assignments} = theSignalman ->  R4.PointAssignment

This is because for a given object of class “Signalman”, there will be many rela
objects of class “Point” and hence many related objects of the class
“PointAssignment” - one for each association instance.

In practice, it will often be the case that we wish to find the object of the
association class that is related to a particularpair of related objects of the other
classes. To do this we can use a correlated associative navigation thus:

<association class instance handle> = <starting handle a> and \
 <starting handle b> -> <associative relationship spec>

Where:

Example: # If “thePoint” and “theSignalman” are handles on instances of the
# corresponding classes then:
ourAssignment = thePoint and  theSignalman -> R 4.PointAssignment

Notes: 1. A correlated associative navigation cannot be placed as a part of a chain of
navigations;

2. If the link between the association class and the association is stereotyped
<<multivalued>> (as it is for association R6 in Figure 1), then a correlated
associative navigation will return a set of instance handles (See 8.9
“Multivalued Association Classes” on page 44.

34. iUML Simulator fully supports correlated associative navigation, however the compile time error checking is not as complete
as for the other navigation forms. See the release notes for details.

<association class instance handle> is the returned handle for the object of the association class tha
correlates <starting handle a> and <starting handle b>.

<starting handle a> is the instance handle for one of the pair of related objects.

<starting handle b> is the instance handle for the other of the pair of related objects.

<associative association spec> must be an relationship specification that navigates to an
association class for an association that links the two classes.
The specification should be framed as if navigating from
<starting handle a> to <starting handle b>
UML ASL Reference Guide for ASL Language Level 2.5 Page 43



Association and Generalisation

 per
ppear
k
ure 1

at is

sses

 an

n
s of

one
an
ent
tive

dels
8.9 Multivalued Association Classes

In associations where there can be many instances of the associative class
instance of the association, special treatment is required. Such associations a
on a Class Diagram with the stereotype <<multivalued>> attached to the lin
between the association class and the association - as is the case for R6 in Fig
on page 36.

Associations that are stereotyped in this way have a semantic equivalent th
illustrated in Figure 2 below.

Figure 2: Semantic Equivalence for <<multivalued>> Association Classes

Note now the difference between the abstractions of the two association cla
“HistoricalPointAssignment” on the left and “Assignment” on the right.

Each instance of “HistoricalPointAssignment” on the left is an abstraction of
assignment of an instance of “Point” to an instance of “Signalman” - and if a
particular “Point” is assigned to the same “Signalman” n times there will be 
instances of “HistoricalPointAssignment”. Hence there are multiple instance
“HistoricalPointAssignment” for a given instance of association R6.

Each instance of “Assignment” on the right is an abstraction of the fact that 
or more assignments have been made between an instance of “Point” and 
instance of “Signalman”. The details of each instantiation of such an assignm
in this equivalent model are captured via the association R8 and the respec
instances of “HistoricalPointAssignment”.

If desired, a standard modelling pattern may be applied in order to convert mo
containing such <<multivalued>> association classes into their semantic
equivalent representation.35

35.iUML fully supports <<multivalued>> association classes, so there is no need to apply such a modelling pattern.

HistoricalPointAssignment

Point

Signalman

R6

was historically
assigned to
1..*

was historically
assigned
0..*

<<multivalued>>

R8

HistoricalPointAssignment

Point

Signalman

R7

was assigned to
1..*

was assigned
0..*

Assignment

is instantiatd as
1..*

is an instantiation of
1

Page 44 Kennedy Carter  2003



ly.
l of
8.10 Associate and Unassociate

In the case of a multivalued association class, the association itself must be
created and deleted using the “link using” and “unlink” constructs respective
However, two additional constructs are used to specify the addition or remova
an association object to or from anexisting  association instance (or UML
“link”).

Addition of a new association object:

Syntax:

associate  <source instance handle> <relationship specification> \
<destination instance handle> using <association class instance handle>

Where:

Notes: 1. The source and destination objects must be linked through the association
specified at the time this statement is executed. Any attempt to associate an
association object to an unlinked source & destination object pair is regarded
as a run time error.

2. There is no distinction between the association object linked when the
association was created (by “link using ”) and an association object linked
subsequently (using “associate ”).

<source instance handle> is the handle of the first linked object (the “source” object)

<destination instance handle> is the handle of the second linked object (the “destination”
object)

<relationship specification> is the specification of the relationship from the “source
object” to the “destination object”.

This can be of any of the forms described in previous
sections, providing that it is unambiguous. Note that this
specification should be framed as if navigating from
“source object” to “destination object”.

<association class instance handle> is the handle of an existing object instance that is to be
added as an association object to the respective
(multivalued) association instance.
UML ASL Reference Guide for ASL Language Level 2.5 Page 45



Association and Generalisation
Removal of an existing association object:

Syntax:

unassociate  <source instance handle> <relationship specification> \
<destination instance handle> from  <association class instance handle>

Where:

Notes: 1. The source and destination instances must be linked through the association
specified at the time this statement is executed.

2. The association object must have been associated with the association
instance (using either “link using ” or “associate ”) prior to this statement
being executed.

3. It is the responsibility of the analyst to ensure that an association that involves
an association class has at least one association object associated with it. If the
last association object is deleted, the analyst must ensure that the
corresponding association is also deleted using “unlink ”.

<source instance handle> is the handle of the first linked object (the “source” object)

<destination instance handle> is the handle of the second linked object (the “destination”
object)

<relationship specification> is the specification of the relationship from the “source
object” to the “destination object”.

This can be of any of the forms described in previous
sections, providing that it is unambiguous. Note that this
specification should be framed as if navigating from
“source object” to “destination object”.

<association class instance handle> is the handle of the object that is to be removed as an association
object for the respective association.
Page 46 Kennedy Carter  2003



art

ne or

y

9 Signal Generation

Signals may be generated and sent to objects, classes and to non-counterp
terminators using the “generate ” statement:

Syntax:

generate  <signal specification> ( <signal parameters> )

in the case of a creation signal, a signal destined for an assigner state machi
a non –counterpart terminator.

or:

generate  <signal specification> ( <signal parameters> ) to  <destination instance handle>

in the case of a signal destined for an existing state machine.

Where:

<signal specification> consists of the signal label and the signal name in the following
syntax:

<key letter><signal number> : <signal name>

The key letter can be that of a class or a non-counterpart terminator.
In the case of a signal destined for an assigner state machine, the key
letter will be of the form:

<association class key letter> - A

<signal parameters> is a comma separated list of parameters for the signal. If there are no
parameters then the empty signal parameter list must be used - for
example:

generate  NOZ8: triggerDepressd() to  theNozzle

Signal parameters may be of any valid ASL type.

<destination instance handle> is the handle of the destination object to which the signal is directed.

This handle must be for a class of the correct type - i.e. the object that
the handle references must be for the same class as that indicated b
the <key letter> in the signal label.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 47



Signal Generation
Notes: 1. All the signal parameters must be supplied in the same order as that in the
definition in the xUML model.

2. Use of the “to ” clause is invalid for signals to assigner state machines, non-
counterpart terminators and the creation states of state machines.

3. If a signal is polymorphic (i.e. it is directed at a superclass), then the
<destination instance handle>  must be a handle for an instance of
the superclass.

Examples: # Example 1: Send a creation request to Disk Request
#
# In this example, the signal causes entry to an initial
# (creation) state and so does not require a “to” clause
generate  DR5 : Create_Disk_Request ()

# Example 2: Send a signal to an existing object of class Robot
#
# Assume that “this” is a handle on an object of a class which
# is associated with the Robot class through the association R1,
# and “x” and “y” are local variables that define the position we
# want the “requiredRobot” to move to when reset.

requiredRobot = this -> R 1. Robot

# “requiredRobot” is thus a handle on an object of
# the “Robot” class

generate  ROB1: Reset ( x , y ) to  requiredRobot
Page 48 Kennedy Carter  2003



While
ML
tored
ASL

 of

uld
lying
10 Arithmetic and Logical Operations

10.1 Constants and Limits

In many of the examples, constants have been used as parts of expressions.
this serves well for the purposes of illustration, it should be noted that most xU
models should require minimal use of constants since such data could be s
as attributes of specification classes. Nevertheless, so as not to be restrictive
defines the following syntax for constants:

Syntax:

The syntax depends on the base datatype:

A full definition of the syntax can be found in the syntax summary at the end
this reference manual.

For the above types the following bounds are defined:

Of course no practical implementation can achieve all of these. Analysts sho
therefore make use of User Defined Types (based on the appropriate under

Integer: 1 42 -127 etc.

Real: 1.0 4.5 -56.0 1E27 etc.

Date: yyyy. mm. dd

Time of Day: hh: mm: ss

Text: “ text”

Enumeration: ‘ enumeration_value’

Integer: -Infinity +Infinity

Real: -Infinity +Infinity

Date: -Infinity +Infinity

Time of Day 00:00:00 23:59:59

Text: “” Unlimited length string

Enumeration Bounded by the definition of the type
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 49



Arithmetic and Logical Operations

stem
red,

d.

very
state
type) with acceptable ranges specified. Architectures must then achieve an
effective implementation of these types. For the date types, the calendar sy
in use will depend on the software architecture. If more sophistication is requi
this should be made the subject of a calendar domain.

Special Note:  Throughout ASL only plain single and double quotes are use
Unfortunately many word processors use “smart quotes” that automatically
change text to use balanced and symmetric quotes.  While we have made e
effort to ensure that has not happened in the production of this document we
the ASL policy here for the avoidance of doubt.

For the remaining types, the following constant values are defined:

Notes: 1. Constants may be used in place of <local variable> in any ASL construct where
the <local variable> appears on the right hand side of the assignment operator
(the “=” symbol).

2. When it is required to assign a constant enumeration value to a local variable, it
is necessary to explicitly state the enumeration type.  (This must be so, since
many enumerations may share the same enumeration values.  It is therefore
impossible to unambiguously determine the enumeration type from a single
value assignment).

Thus such assignments must be written as follows:

<local variable> of  <enumeration type> = '<enumeration value>'

Example: bad_status of  status_type = 'failed'

Boolean: TRUE FALSE

Instance handle: UNDEFINED ALREADY_DEFINEDa ERRORa

a.iUML Simulator  does not support ALREADY_DEFINED or ERROR
Page 50 Kennedy Carter  2003



10.2 Arithmetic Calculations

Arithmetic calculations may be performed during an assignment to a local
variable.

Syntax:

<local variable> = <arithmetic expression>

Where:

Notes: 1. Components of arithmetic expressions cannot be complex (for example
embedded ASL operation invocations).

2. Arithmetic operations are defined for numeric base types only (Integer  and
Real ) and for user defined types based upon them.

3. The actual precision and truncation rules for arithmetic calculation depends on
the software architecture and implementation domains in use.  Clearly, the
software architecture must attempt to provide the best possible match to the
constraints specified in a user defined type or to unconstrained base types.

4. The following arithmetic operations are defined36 : + - / * ^

5. There are no precedence rules except for those defined by use of parentheses
() .

6. The discussion regarding data type rules describes more about arithmetic
expressions.

<local variable> is the variable to which the results of the expression are assigned.

<arithmetic expression> is an arithmetic expression making use of the normal arithmetic
operations on local data items (local variable, constant or <instance
handle>. <attribute name>).

36.iUML Simulator  does not support the use of the power operator (^).
UML ASL Reference Guide for ASL Language Level 2.5 Page 51



Arithmetic and Logical Operations

 to a
les
10.3 Local Variable Assignment

Most of the statements that we have considered so far result in assignment
local variable. In addition to those mentioned, simple copying of local variab
is permitted:

Syntax:

<local variable> = <local variable>

or:

{ <local variable set> } = { <local variable set> }

These will result in the copying of the local variable.

Notes: 1. Assignment of instance handles is permitted; e.g.
new_object = existing_object

2. Assignment of instance handle sets is permitted, and results in a copy of the
set being made; e.g.

{new object set} = {existing object set}

3. Whether an actual copy of the set is made is architecture dependant. The ASL
rules are such that it must appear as if a copy is made and thus if {existing
object set} is changed subsequent to the execution of this statement,
{new object set} will not change.

4. Assignment of sets of structures is permitted, and results in a copy of the set
being made; e.g.

{new structure set} = {existing structure set}

The same considerations apply as for copying of instance handle sets. Sets of
structures are discussed more fully in a later section.
Page 52 Kennedy Carter  2003



ries
10.4 Logical Conditions

Many ASL statements use logical conditions. Such a condition performs a se
of logical tests on data item values.

Syntax:

<component> <binary logical operator> <component>

or:

!  <component>

This defines a Boolean data type that receives the valueTRUE or FALSE. Where:

The following table shows the logical operations that are defined in ASL:

<component> is either another <condition> or a <data item>

<data item> can be:

<instance handle>.<attribute name>

<local variable name>

<constant>

countof { <instance handle set> }

countof <class>

Symbol Keyword Meaning Valid Data Types

! not Logical Negation Boolean

= equals Equality Integer, Date, Time, Text, Enum,

Boolean, Instance Handlea,

Structureb

a. iUML Simulator does not support comparison of instance handles, although comparison of a handle with UNDEFINED
is supported.
b.Equality is defined only if it is defined (recursively) for the members of the structure. See section Equality for more details.

!= not-equals Inequality Integer, Date, Time, Text, Enum,
Boolean, Instance Handle

< less-than Inequality Real, Integer, Date, Time

> greater-than Inequality Real, Integer, Date, Time

<= less-than-or-equal-to Inequality Integer, Date, Time

>= greater-than-or-equal-to Inequality Integer, Date, Time

& and Logical And Boolean

| or Inclusive Logical Or Boolean
UML ASL Reference Guide for ASL Language Level 2.5 Page 53



Arithmetic and Logical Operations
Notes: 1. These will be evaluated with a precedence according to the order shown
(highest precedence first), although parentheses () may be used to alter this if
desired. Certain operations are valid for certain data types only.

2. The last column shows the data types for which the operation is valid.

3. Either the Symbol or the Keyword may be used in ASL
Page 54 Kennedy Carter  2003



is

ir
table

he

g

11 Operations

11.1 ASL Operations in the Context of a Domain Model

ASL provides for operation definitions and operation calls. Formally, in ASL, th
is achieved through the mechanism of an ASL function.

The following sections cover the definition and calling of ASL functions and the
specific uses as synchronous operations provided by elements of an execu
UML model.

11.2 Defining and Calling an ASL Operation

To use operations, a formal definition of the interface to the operation and t
implementation of the operation must be made. This is done in a “function
definition”.

Such definitions are associated with the operations provided by the followin
model element types within a UML model:

•  domains (See 11.3 “Domain Scoped Operations” on page 56)

•  classes (See 11.4 “Class Scoped Operations” on page 58)

•  objects (See 11.5 “Object Scoped Operations” on page 60)
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 55



Operations

 is

om
to

hat

hat
11.3 Domain Scoped Operations

A domain scoped operation is one that is associated with the domain that it
declared in, but not with any specific class or object within that domain. This
provides a partially anonymous interface to the domain that can be called fr
outside the domain37 . Thus users of the domain (i.e. bridges) are not coupled
the internal structure of the domain.

Operation Definition Syntax (for domain scoped operations):

define function  <operation specification>
input <parameter 1 name> : <parameter 1 type>,<parameter 2 name>: ...
output  <result 1 name > :  <result 1 type>,<result 2 name> : ...

<ASL statements>
enddefine

Where:

Notes: 1. See “Notes Common To All Operation Definitions:” on page 62.

2. The handle “this ” is not available in the method(the <ASL Statements> ) of
a domain scoped operation.

37.Domain scoped operations may also be called from within the domain in which they are defined.

<operation specification> identifies the domain scoped operation and conforms to the following
syntax:

<domain key letter><operation number> :: <operation name>

<parameter 1 name>:<parameter 1 type>
<parameter 2 name>:<parameter 2 type>
...

are comma separated pairs of formal parameter names and their types t

are passed into the operationa

a.There are limitations in iUML Simulator with respect to the way input parameters can be used within the function. See release
notes for details.

<result 1 name> : <result 1 type>
<result 2 name> : <result 2 type>
...

are comma separated pairs of formal parameter names and their types t

are returned by the operationb

b.In iUML Simulator any output parameter from a function cannot be placed on the right hand side of a statement within a
function. Such parameters should be placed on the left hand side of assignment statements only. This will require the use of
temporary local variables if necessary.

<ASL Statements> are the ASL statements that define the method for the respective
operation.
Page 56 Kennedy Carter  2003



.

Operation Invocation Syntax (for domain scoped operations):

[ <result 1> , <result 2> , ... ]  = <operation specification> [ <parameter 1> , \
 <parameter 2> , ... ]

Where:

Notes: 1. See “Notes Common To All Operation Invocations:” on page 63.

<result 1>
<result 2>
...

are the comma separated names of the actual parameters returned by the invocation

<operation name> identifies the operation, which conforms to the following syntax:

<domain key letter><operation number> :: <operation name>

<parameter 1>
<parameter 2>
...

are the comma separated names of the actual input parameters passed with the
invocation.
UML ASL Reference Guide for ASL Language Level 2.5 Page 57



Operations

cific
tion

et up
 a

s any

n.

x:

hat

hat
11.4 Class Scoped Operations

A class scoped operation is one that is associated with and provided by a spe
class in a domain. For example, this might be used to provide a creation opera
for the class. Such an operation would create a new object of the class and s
any initial conditions required. If the class was active, it could then generate
signal to the class to drive it through its lifecycle.

Class scoped operations have exactly the same definition and call syntax a
ASL operation except that a special syntax is defined for the name

Operation Definition Syntax (for class scoped operations):

define function  <operation specification>
input <parameter 1 name> : <parameter 1 type>,<parameter 2 name>: ...
output  <result 1 name > :  <result 1 type>,<result 2 name> : ...

<ASL statements>
enddefine

Where:

Notes: 1. See “Notes Common To All Operation Definitions:” on page 62.

2. The handle “this ” is not available in the method of a class scoped operatio

3. The <operation number> name space is disjoint from the <signal number>
name space employed for signals directed at the class (See 9 “Signal
Generation” on page 47).

Thus a class scoped operation and a signal may share the same number for a
given class.

4. The <operation name> should not be the same as the name of any signal
directed at the same class.

<operation specification> identifies the class scoped operation and conforms to the following synta

<class key letter><operation number> : <operation name>

<parameter 1 name>:<parameter 1 type>
<parameter 2 name>:<parameter 2 type>
...

are comma separated pairs of formal parameter names and their types t

are passed into the operationa

a.There are limitations in iUML Simulator with respect to the way input parameters can be used within the function. See release
notes for details.

<result 1 name> : <result 1 type>
<result 2 name> : <result 2 type>
...

are comma separated pairs of formal parameter names and their types t

are returned by the operationb

b.In iUML Simulator any output parameter from a function cannot be placed on the right hand side of a statement within a
function. Such parameters should be placed on the left hand side of assignment statements only. This will require the use of
temporary local variables if necessary.

<ASL Statements> are the ASL statements that define the method for the respective
operation.
Page 58 Kennedy Carter  2003



.

Operation Invocation Syntax (for class scoped operations):

[ <result 1> , <result 2> , ... ]  = <operation specification> [ <parameter 1> , \
 <parameter 2> , ... ]

Where:

Notes: 1. See “Notes Common To All Operation Invocations:” on page 63.

<result 1>
<result 2>
...

are the comma separated names of the actual parameters returned by the invocation

<operation name> identifies the operation, which conforms to the following syntax:

<class key letter><operation number> : <operation name>

<parameter 1>
<parameter 2>
...

are the comma separated names of the actual input parameters passed with the
invocation.
UML ASL Reference Guide for ASL Language Level 2.5 Page 59



Operations

cific

ir

x:

hat

hat
11.5 Object Scoped Operations

An object scoped operation provided by a class is one that is applied to a spe
object at run time in an analogous way to “existing instance signals”.

Such operations require a specific syntax both for their definition and for the
call.

Operation Definition Syntax (for object scoped operations):

define instance function  <operation specification>
instance this :  <class name>
input <parameter 1 name> : <parameter 1 type>,<parameter 2 name>: ...
output  <result 1 name > :  <result 1 type>,<result 2 name> : ...

<ASL statements>
enddefine

Where:

Notes: 1. See “Notes Common To All Operation Definitions:” on page 62.

2. The instance handle “this ” is available for use within the method for an object
scoped operation.

3. The <operation number> name space is disjoint from the <signal number>
name space employed for signals directed at the class (See 9 “Signal
Generation” on page 47).

Thus an object scoped operation and a signal may share the same number for
a given class.

4. The <operation name> should not be the same as the name of any signal
directed at the same class.

<operation specification> identifies the class scoped operation and conforms to the following synta

<class key letter><operation number> : <operation name>

<class name> is the name of the class that provides the object scoped operation.

<parameter 1 name>:<parameter 1 type>
<parameter 2 name>:<parameter 2 type>
...

are comma separated pairs of formal parameter names and their types t

are passed into the operationa

a.There are limitations in iUML Simulator with respect to the way input parameters can be used within the function. See release
notes for details.

<result 1 name> : <result 1 type>
<result 2 name> : <result 2 type>
...

are comma separated pairs of formal parameter names and their types t

are returned by the operationb

b.In iUML Simulator any output parameter from a function cannot be placed on the right hand side of a statement within a
function. Such parameters should be placed on the left hand side of assignment statements only. This will require the use of
temporary local variables if necessary.

<ASL Statements> are the ASL statements that define the method for the respective
operation.
Page 60 Kennedy Carter  2003



.

Operation Invocation Syntax (for object scoped operations):

[ <result 1> , <result 2> , ... ]  = <operation specification> [ <parameter 1> , \
 <parameter 2> , ... ] on <handle>

Where:

Notes: 1. See “Notes Common To All Operation Invocations:” on page 63.

2. If, at compile time, the object scoped operation is found to have been called
with the <handle> being of a type different from that indicated by the instance
declaration in the respective operation definition then this is regarded as a

compile time error38 .

3. If an object scoped operation is declared for a superclass, and the

implementation of the operation is declared39  to be deferred down a
specified subclass relationship then there must be an operation with the same
name  declared for each subclass of the association. At run time, the user ASL
must invoke the superclass operation on a superclass object. The
implementation will then automatically invoke the appropriate operation on the
correct subclass.

<result 1>
<result 2>
...

are the comma separated names of the actual parameters returned by the invocation

<operation name> identifies the operation, which conforms to the following syntax:

<class key letter><operation number> : <operation name>

<parameter 1>
<parameter 2>
...

are the comma separated names of the actual input parameters passed with the
invocation.

<handle> is an instance handle that refers to the object which provides the operation.

38.The instance declaration is necessary to support polymorphic operations. iUML Modeller automatically generates all the
appropriate instance definitions and so the analyst need not be concerned with this issue.
39.There is no actual syntax within ASL for making this declaration. The information is held directly within a CASE tool
repository.
UML ASL Reference Guide for ASL Language Level 2.5 Page 61



Operations
Notes Common To All
Operation Definitions: 1. In CASE tools such as iUML, it is not necessary for the analyst to write the

specify the definition of the operation using the “define function ....
input ... output ...enddefine ” syntax. The analyst need only write the
method for the operation (i.e. the <ASL Statements>).

2. The <operation specification>  must be unique within a domain.

3. Parameters can be of any valid ASL type, and can be either single valued or
sets of instance handles or structures.

4. If there are no input and/or output parameters the <parameter

name>:<parameter type> clauses should be omitted from the respective
parts of the operation definition.

5. If an input or an output parameter is an instance handle, then the name of the
class to which the handle refers should be used for the type.

For example, suppose that the object scoped operation
“AC1:getAccountOwner” provided by the “Account” class returns the parameter
“theOwner” of type “Customer” instance handle, the operation might be defined
as:

define instance function  AC1 : getAccountOwner
instance this :  Account
input
output  theOwner :  Customer

theOwner = this ->  R1
enddefine

6. If the input or output parameters are sets (of instance handles or structures),
then the parameter name must be surrounded by braces {}.

For example, suppose that the class scoped operation
“ROB7:findEveryIdleRobot” provided by the “Robot” class returns the
parameter {idleRobots} of type “Robot” instance handle, the operation might be
defined as:

define function  ROB7: findEveryIdleRobot
input
output  {idleRobots} :  Robot

{idleRobots} = find Robot  where status  = ‘ Idle ’
enddefine

Such a definition indicates that a set of “Robot” handles is expected to be
returned.

7. The ASL language definition does not specify whether input or output
parameters for operations are to be passed by value or by reference.
Implementations may do either or both. However, ASL in an operation must not

attempt to modify input parameters40 .

40.For backwards compatibility reasons, iUML Simulator allows modification of input parameters that are sets of structures.
Such modifications remain visible in the calling block of ASL.  Analysts producing new ASL should not use this feature.
Page 62 Kennedy Carter  2003



Notes Common To All
Operation Invocations: 1. The input and return parameter names used in the definition may differ from

those used in the invocation. Matching is achieved by the ordering of items
within the brackets “[] ” and within the input and output parts of the respective
operation definition.

2. If there are no input and/or output parameters empty brackets “[] ” must be
used in the respective part of the invocation.

3. Recursive operation calls are permitted.
UML ASL Reference Guide for ASL Language Level 2.5 Page 63



Operations
Page 64 Kennedy Carter  2003



on
is

r

he
12 Timer and Time Operations

12.1 The xUML Timer

The xUML formalism provides a built-in timer mechanism modelled closely 
that of Shlaer Mellor41 . The timer is used to request that a specified signal 
sent when either a relative or absolute time has expired.

Analysts can make use of the functionality provided by the xUML Timer from
within their own models by:

•  invoking operations on the Timer terminator, or;

•  sending signals to the Timer terminator.

Such operations and signals are “bridged” to operations supplied by anothe
domain42  that implements the timer functionality.

The following sections therefore illustrate how, using ASL, the interface to t
xUML Timer is in order to obtain the required behaviour.

41.“Object Lifecycles - Modeling the World in States” p53
42.In iUML and iUML Simulator the operation of instantiating a timer terminator in a domain automatically makes available the
various functions signals and data types required by the terminator, and provides the implementation of the domain that provides
the xUML Timer together with the bridge implementations for the various operations and signals defined for the timer terminator.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 65



Timer and Time Operations

 the

has
Invoking the Operations Provided By the xUML Timer Interface

The 3 operations provided by the xUML Timer interface are:

•  Create_Timer

•  Get_Time_Remaining

•  Delete_Timer

The invocation syntax for each of these operations now follows.

Create_Timer [ <My_Timer_ID> ] = Create_Timer[]

This creates a timer object which can then be set, reset or deleted by using
returned timer ID as a reference.

Where:

Get_Time_Remaining [  <still_to_go> ]  = Get_Time_Remaining[  <My_Timer_ID>  ]

This reads the amount of time remaining before the specified timer is due to
expire.  The result will be zero if the timer specified is not running.

Where:

Delete_Timer [] = Delete_Timer[ <My_Timer_ID> ]

This deletes the specified timer. This should only be performed after the timer
been reset.

Where:

<My_Timer_ID> is the id of the created timer (of type Timer_ID).

<still_to_go>  is an integer indicating the time remaining (in units
specified when TIM1 was sent).

<My_Timer_Id> is the id of the timer who remaining time that is being
queried.

<My_Timer_ID> is the id of the timer that is to be deleted.
Page 66 Kennedy Carter  2003



arry

f the
ent
Signals Consumed By the xUML Timer

There are 3 signals that can be directed at the xUML Timer each of which c
one or more signal parameters:

•  TIM1:Set_Timer

•  TIM2:Reset_Timer

•  TIM10:Set_Absolute_Timer

The syntax for generating such signals is defined below:

TIM1: generate TIM1:Set_Timer( <Timer_ID> , \
<Time_Remaining> , \
<Granularity> , \
<Signal> , \
<Return Instance Handle> )

This puts the timer into a state where it is counting down until the supplied
Time_Remaining has expired. At that point the timer will send the specified
signal to the object specified by <Return Instance Handle>.

Where:

TIM2: generate TIM2:Reset_Timer( <Timer_ID> )

Causes the timer to enter a reset state where it is no longer counting down. I
timer was previously counting down, the requested return signal will not be s
when the timer is reset.

Where:

<Timer_ID> is the id of the timer that is to be set.

<Time_Remaining> is an integer indicating the time-out time in units indicated by Granularity

<Granularity> is an enumeration specifying the units for this timer. The enumeration values
defined in ASL are ‘MICROSECOND’, 'MILLISECOND',  'SECOND',
'MINUTE' , 'HOUR' and'DAY' .

<Signal> is the return signal to be sent when the timer expires. A directive “signal ” is
supplied for the purpose and is described in“Signal Directive:” on page 68.

<Return Instance Handle> is a handle on the object to which the signal must be returned. This is of type
“Instance Handle”, which is a special “untyped” instance handle. This type
cannot be used for any other purpose in a domain.

<Timer_ID> is the id of the timer that is to be reset.
UML ASL Reference Guide for ASL Language Level 2.5 Page 67



Timer and Time Operations

ate
the

ty.

an
se
TIM10: generate TIM10:Set_Absolute_Timer( <Timer_ID> , \
<Date> , \
<Time> , \
<Signal> , \
<Return Instance Handle> )

This puts the timer into a state where it is counting down until the supplied D
and Time is reached. At that point the timer will send the specified signal to
object specified by <Return Instance Handle> .

Where:

Note: An absolute timer will return time remaining in SECOND granulari

Signal Directive: event(“ <signal label> ”)

Where:

Note: This construct turns a string literal containing a signal label and returns
ASL meta-type, namely Signal Event. The construct can only be used in the
timer signals.

<Timer_ID is the id of the timer that is to be set.

<Date>  is the date on which the timer is to expire (type Date)

<Time>  is the time at which the timer is to expire (type Time_of_Day)

<Signal> is the return signal to be sent when the timer expires. A directive “signal ”
is supplied for the purpose and is described in“Signal Directive:” below.

<Return Instance Handle> is a handle on the object to which the signal must be returned. This is of type
“Instance handle”, which is a special “untyped” instance handle. This type
cannot be used for any other purpose in a domain.

<signal label> defines the signal that is to be generated when the
respective timer expires, and is of the form:

<class keyletter><signal number>
Page 68 Kennedy Carter  2003



r

Examples of ASL that make use of the xUML Timer

The following examples provide an illustration of how the various xUML Time
operations and signals may be used within an executable UML model.

Example 1:
# Create a new timer
[timer_id] = Create_Timer[]

Example 2:
# Set a timer to return the signal “D7:Time to do something” to
# ourselves in 5 seconds from now
timeout = 5
generate TIM1:Set_Timer(timer_id,timeout,‘SECOND’,event(“D7”),this)

Example 3:
# Set a timer to return the signal “D8:Time to Wake Up” to ourselves
Actual_Date = 1994.10.19
Actual_Time = 07:00:00
generate TIM10:Set_Absolute_Timer( timer_id, \

 Actual_Date, \
 Actual_Time, \
 signal(“D8”),\
 this)

Example 4:
# To reset the timer
generate TIM2:Reset_Timer(timer_id)

Example 5:
# To find the time remaining
[still_to_go] = Get_Time_Remaining[timer_id]
# To delete the timer
[] = Delete_Timer[timer_id]
UML ASL Reference Guide for ASL Language Level 2.5 Page 69



Timer and Time Operations
12.2 Current Date and Time

Access to the current date and time may be achieved as follows:

Syntax:

<local variable> = current-date
<local variable> = current-time

Notes: 1. The data types returned are “Date” and “Time_of_Day” respectively.

2. “current-date ” and “current-time ” are ASL keywords.

3. There are no ASL defined operations on time other than the logical operators
comparison operators.

4. “ current-date”  and “current-time”  cannot be used directly in
expressions.
Page 70 Kennedy Carter  2003



one

m of
 of

any
l.

local
type
13 Complex Datatypes and Sets

Until now we have considered rather simple data items43 within a ASL. These
cover the majority of requirements.  However, in some situations it may be
necessary to transmit signal parameters that are complex structures.  This
typically happens in cross-domain signals where the pattern of information in
domain may be radically different to that in another.

For example, we may wish to assemble a message for the operator in the for
a small tabular report that contains information gathered from many objects
many classes in the application domain.

13.1 Supported Structures

ASL supports hierarchical data structures. In principle these can be nested to
depth, but in practice one would expect limited depth within an xUML mode

These structures can then be used to support complex signal parameters and
variables in ASL. As we have already stated the use of structures as the data
of an attribute of a class isspecifically excluded.

43.We have dealt with only single values of any type and sets of instance handles.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 71



Complex Datatypes and Sets
13.2 Definition of Structures

Data structures are defined as follows44 :

define structure  <structure type name>
<member name> <member type>
<member name> <member type>
...
...

enddefine

Where:

Notes: 1. Any member of the structure can be a set, by use of the {}  notation. For
example:

define structure  my_type
number_of_robots Integer
{robots} Robot

enddefine

This defines a structure that contains two components, a single integer and a
set of handles for the class “Robot”.

2. These structure definitions are not shown with the ASL associated with an
action.  Rather they are (in language terms) defined as part of a global type
definition for a domain.

3. Recursive data structures are not permitted. (i.e. a structure cannot be defined
to contain a member, at any level of nesting, of the same type as the structure
being defined).

Examples: # Two structures (one nested in the other) necessary for the example
# given in the previous section.
# The “inner” structure

define structure  disk_request_record
qp_id Integer
time_of_request Time_of_Day

enddefine

# The “outer” structure

define structure  request_list
disk_id Integer
{requests} disk_request_record

enddefine

44.In iUML, structure definitions are held in the database and manipulated by menu operation, and the analyst is never required
to write out the syntax described here.

<structure type name> is the name that will be used when defining instances of the structure using the
“is” construct (see later)

<member name> is the name of a component or member of the structure

<member type> is any valid ASL type, including structure types
Page 72 Kennedy Carter  2003



cal
o an

om
ype

is
13.3 Instantiation of Structures

So far in most of ASL there have not been any explicit type declaration for lo
data items.  This is possible because the types on all data items “external” t
action (attributes and signal parameters) are explicitly defined in the xUML
model. This allows the type of data items within an action to be determined fr
their first use, and this relieves the analysts from the burden of specifying the t
of every item.

However, with sets of complex structures, explicit typing is necessary. This 
indicated by use of the “is ” statement:

{<local structure>} is  <data type>

Where:

This creates an empty set of the appropriate type.

Notes: 1. The “is ” statement must appear in an ASL segment before any use of the set
of structures (for example in an append  statement).

2. A single “is ” statement (for example:  “x is  request_list”) may be executed
many times within an action. The “is ” statement is not simply a declaration but
also initialises the set to be empty.  Any data in the set before the “is ” is
executed will be lost.

3. ASL does not allow instantiation of a single structure.  Structures must always
exist in sets.

Example: # Declare a set of request_lists (as defined in
# the previous section).

{requests} is  request_list

{<local structure>} is the local instance of a set of structures being declared

<data type> is any valid structure type
UML ASL Reference Guide for ASL Language Level 2.5 Page 73



Complex Datatypes and Sets

nd
13.4 Assembly of Sets of Structures

Having declared a set of structures, members can be added using the appe
statement:

append [<value list>] to {<local structure>}

Where:

Notes: 1. Matching of structure members to values is achieved on the basis of position
within the <value list> against position within the original structure definition.

2. When one set is appended as a member of another (as in the example below),
then the contents of the set being appended are effectively copied into the set
being appended to.  This means that any subsequent change to the set that
was appended (the next iteration in the outer loop below), will not affect the
member of the outer set to which it had just been appended.

Examples:

# Set up a disk request list and send to operator for display.
# First, declare the list to be sent.
{ request_table } is  request_list

# Then, loop over all the disks, building up outer structure
{ disks } = find-all  Disk
for  disk in  {disks} do

{ requests }  = disk ->  R1 . Disk_Request
{ disk_table } is  disk_request_record
# Loop round requests for this disk, building up the inner structure
for  request in { requests } do

append [ request.QP_Id,request.Time_Request_Made ] to { disk_table }
endfor
append [ disk.Disk_Id , {disk_table} ] to { request_table }

endfor

generate  EUI1 : displayRequestTable ( { request_table } )

{<local structure>} is a previously declared set of structures

[<value list>] is a comma separated list of local variables to be assigned to members
Page 74 Kennedy Carter  2003



 of
loop
13.5 Use of Loops to Perform Unpacking of Set Structures

Typically, such sets of structures will also be received by actions in the form
signal parameters or input parameters to operations.  To unpack these the 
construct must be used.

For example, an action receiving the {request_table} created above could
perform:

for [  disk_id , { disk_table } ] in { request_table } do
x = disk_id
...
...
for [  qp_id ,  time ] in { disk_table } do

y = qp_id
z = time
...
...
w = disk_id
# (i.e. disk_id is still in scope from the outer loop)

endfor
endfor
UML ASL Reference Guide for ASL Language Level 2.5 Page 75



Complex Datatypes and Sets

citly
13.6 Ordering of Sets of Structures

By default, sets of structures have no ordering.  However, they can be expli
ordered by the following techniques:

append [ <value list> ] to { <set> } ordered by  <member>

{ <new set> } = { <old set> } ordered by  <member>

Where:

Notes: 1. The meaning of ordering is as defined in the earlier section on “Ordering of
Instance handles”.

2. Reverse  ordering may be achieved by using “reverse ordered by ”

3. Ordering may be achieved on multiple members45 by use of “&”, for example:

4. {new_list} = {old_list} ordered by name & address

5. The resulting set will be primarily sorted by name, and within each name by
address.

6. Appending to the same set with different ordering in append  different
statements will cause unpredictable results.

<member> is thename of the member of the structure

45.iUML Simulator  does not support ordering by multiple structure members.
Page 76 Kennedy Carter  2003



13.7 Subsets of Sets of Structures

The contents of sets can be reduced by making subsets46 :

{ <new set> } = { <old set> } where  <condition>

Where:

Notes: 1. This operation effectively makes a copy of the elements of {<old set>} so that
any subsequent change to {<old set>} will not affect the contents of {<new
set>}.

2. Whether or not the data is physically copied by this operation is architecture
dependent.  It is easy to envisage run time data structures that would achieve
these effects simply by maintaining masks and indices on the original set.

3. Note that this subsetting of sets of structures is similar to one form of the “find”
operation for sets of instance handles.

Example: { old_requests } = { disk_table } where  time_request_made < 12:00:00

46.iUML Simulator does not support subsetting of structures.

{<new set>} is a set of the same type as {<old set>}, each member of which is a
member of {<old set>} and satisfies <condition>

{<old set>} is set of structures.

<condition> is a logical condition based on members of {<old set>}
UML ASL Reference Guide for ASL Language Level 2.5 Page 77



Complex Datatypes and Sets
Page 78 Kennedy Carter  2003



ts,

rder.
g

ets

f a
set.

me

rst
The

bers
 for

ely.
14 Sets, Sequences and Bags

Until now we have talked rather loosely about “sets”, without regard to their
precise mathematical definition. In fact, “sets” in ASL are capable of being se
sequences or bags. A newly created ASL set is likely to be a “bag” or a
“sequence”. That is it can have duplicates and can be created with a defined o
(Duplicates are likely to appear for example in a multiple navigation involvin
two “many” association ends, back-to-back on one class in a chain.)

In what follows, the “sets” referred to can equally well be sets of handles or s
of structures47 .

14.1 Equality

Implicit in all of the set operations is the concept of “Equality” of members o
set. For example the Unique operation removes duplicate members from the
Duplicates are members that are, in some sense, equal.

ASL defines equality of members as follows:

• For instance handle sets, two members are identical if they refer to the sa
object.

• For structure sets, two element are identical if all of the members of the fi
element are identical to the corresponding element in the other member. 
correspondence between members is determined by the order of the mem
in the definition of the structure. This means that equality must be defined
all the member types.

For structures containing structures, the definition of equality applies recursiv

47.iUML Simulator does not support the set operations in this section for sets of structures. However, the operations are fully
supported for sets of instance handles.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 79



Sets, Sequences and Bags

81:
14.2 The Unique Operation

Duplicates may be removed from sets using the “unique” construct:

{ <new set> } = unique { <old set> }

This has the effect of removing any identical elements in {<old set>}.

Notes: 1. See Section 14.1 on page 79 for the definition of the meaning of elements
being “identical”.

14.3 The countof Operation

Thecountof  operation is available for all set types.

Notes: 1. in the case of a set containing a set the operation will return the number of
elements in the outer set.

2. if the set contains duplicates (is a bag for example), then the countof operation
will count each duplication of the member.

3. the countof operation cannot be applied to the name of a Class in order to
determine the number of objects belonging to the Class. Instead the following
example shows the ASL that is required:

{ all_robots } = find-all  Robot
number_of_robots = countof { all_robots }

14.4 Set Combination Operations

A new set can be created from two old sets, by various manipulations:48

{ <new set> } = union-of { <old set a> } and { <old set b> }
{ <new set> } = disunion-of { <old set a> } and { <old set b> }
{ <new set>} = intersection-of { <old set a> } and { <old set b> }
{ <new set> } = { <old set a> } not-in { <old set a> }

These are best explained by use of the Venn diagrams in Figure 3 on page

48.iUML Simulator  only supports the set operations described in this section for sets of instance handles.
Page 80 Kennedy Carter  2003



Figure 3: Illustration of Set Combination Operations

Notes: 1. The results of these operations are true sets in that there will be no duplicates
and no defined ordering in the resulting set, irrespective of the condition of the
original sets.

2. All sets being combined must be of the same type, and the resultant set will
also be of that type.

A

A

A

A

B

B

B

B

{result} = union-of {A} and {B}

{result} = disunion-of {A} and {B}

{result} = intersection-of {A} and {B}

{result} = {A} not-in {B}
UML ASL Reference Guide for ASL Language Level 2.5 Page 81



Sets, Sequences and Bags
Page 82 Kennedy Carter  2003



d by
ress

SL.
and
er

nt
in.

ther

bot.
lem

the
 on

nal
stem
ld
obot
seen

nts
ns
15 ASL for Bridge Operations

So far we have discussed ASL in the context of states or operations provide
domains, classes or objects. In this section we discuss the use of ASL to exp
bridge mappings between domains.

The capabilities and features described here apply to any section of bridge A
The intention in this document is to provide a reference for the ASL syntax 
semantics only49 . For information on strategies for using bridges please ref
to documentation on the Executable UML method.

15.1 Basic Concepts and Terminology

In the Executable UML method, within a given domain, “Terminators” represe
abstractions of external entities expressed in the subject matter of the doma
Since the actual physical connection to the external entity will be through ano
domain, a “Terminator” represent the connection to other domains.

For example, imagine a domain concerned with the control of an industrial ro
Such a domain will have a number of classes capturing concepts in in the prob
domain of robot control.

At certain points, the ASL in the robot control domain will require to invoke
actual operations on the external robot hardware such as “extend_arm”. In 
robot control domain model, we would see such an operation being invoked
the terminator called, for example, “Robot Hardware”.

Of course, in order to implement this operation, an appropriate electrical sig
must be generated in the appropriate piece of hardware. In our imagined sy
this would be the job of the “Process I/O” (PIO) domain. The PIO domain wou
understand the subject matter of boards, registers and control words. The “R
Hardware” terminator thus also represents the interface to the PIO domain as
in the robot control domain.

In order to make the system work, there will be a segment of ASL that impleme
the “extend_arm” operation. That segment of ASL will specify that the operatio

49.Note that in iUML the case tool requires user to write only some of the ASL required for a typical bridge. The tool generates
the surrounding ASL automatically. Please refer to the iUML documentation for more details.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 83



ASL for Bridge Operations

in.
en
is implemented by invoking a particular operation provided by the PIO doma
We call such a segment of ASL a “bridge” since it forms the connection betwe
two or more domains.

In summary then, we have:

Terminator an abstraction of an external entity and, therefore, an interface to
another domain.  Technically, a UML Interface Class.

Terminator
Operation

an operation provided by a terminator

Bridge a segment of ASL that implements a terminator operation
Page 84 Kennedy Carter  2003



e of
the

al
there
E

l
and
ase
15.2 Domain Scope Within a Bridge

Since a bridge provides a mapping between two (or more) domains, the scop
the ASL used to describe it is no longer that of a single domain. This creates
possibility of ambiguity in the ASL. For example, an operation name or sign
specification can be the same in two different domains in the same system so
must be some way of resolving any ambiguity. This is achieved by the “$US
directive:

$USE <domain_1_keyletter>
<ASL statements requiring visibility of domain_1>

$ENDUSE
$USE <domain_2_keyletter>

<ASL statements requiring visibility of domain_2>
$ENDUSE

Notes: 1. the “$USE” directives are not really ASL statements as such. Rather they direct
a translator and indicate which domain is to be used to interpret the ASL
statements that follow. As a result, “$USE” statements cannot be nested.

2. when no “$USE” is currently in effect, the context is that of the calling or
invoking domain.

3. the “$USE” is required to scope items where there is no other means of
knowing the scope of a name. Thus ...

$USE DOM_B
slot = my_robot ->  R1

$ENDUSE

... is OK even if R1 is not in the scope of DOM_B. This is because, the type of
“my_robot” is already known and so the scope of R1 is inferred. However ...

my_robot = find-one Robot

... requires an explicit $USE for the domain containing the class “Robot” since
there is no other way of knowing to which domain “Robot” belongs.

15.3 Type Mixing in Bridges

As indicated in section Type Mixing Rules (“Type Mixing Rules”), the norma
rules of ASL are relaxed in bridges. The effect of this is to allow assignments
arithmetic expressions that mix types from different domains as long as the b
types involved are commensurate.

This feature supports the “semantic shift” that appears in bridges.
UML ASL Reference Guide for ASL Language Level 2.5 Page 85



ASL for Bridge Operations

d.

 to

he
ts in
ord

ent
15.4 Types of Bridge

In ASL 2.4 and earlier there were only two types of bridge that were supporte
These were:

• Signal to a terminator

• Operation invoked on a terminator

The distinction between the two is unhelpful and our intention is, ultimately,
remove support for signals to terminators and leave a single explicit bridge
invocation mechanism:

• The terminator operation call

In addition in ASL 2.5 there are two flavours of terminator operation:

• Non-object scoped terminator operation

• Object scoped terminator operation

The former of these is exactly equivalent to the ASL 2.4 terminator operation. T
object scoped terminator is used for interactions between counterpart objec
different domains, and the corresponding bridge ASL has access to the keyw
“this”.

The following sections describe the characteristics of the bridges that implem
these terminator operations as well as showing how actual counterpart
manipulation is achieved.
Page 86 Kennedy Carter  2003



st

.

e

ed.
15.5 Definition and Invocation of Non-Object Scoped Bridges

The non-object scoped bridge definition and invocation syntax is:

Definition Syntax:

define bridge  <invoking domain kl> : <terminator kl><operation number> _<operation name>
input  <in param 1> : <in param 1 type> ,  ....
output  <out param 1> : <out param 1 type> ,  ...

<asl statements in the context of invoking domain>
$USE <domain_1_keyletter>

<ASL statements requiring visibility of domain_1>
$ENDUSE
$USE <domain_2_keyletter>

<ASL statements requiring visibility of domain_2>
$ENDUSE
...

enddefine

Invocation Syntax:

[ <out param 1> , ... ] = <terminator kl><operation number> : <operation name> [ <in param 1>,... ]

Where:

Notes: 1. Any ASL statement within the bridge may set the values of the output
parameters.

2. The operation number must be unique within the context of the terminator
providing the operation in the calling domain

3. The operation name must be unique across all the operations provided by the
terminator in the calling domain.

<invoking domain kl> is a convenient short form of the name of the calling domain.  This name mu
be defined within the context of the system into which this domain is
assembled, and must be unique within that context.

<terminator kl> is the key letter of the terminator which provides the bridge operation in the
calling domain.

<operation number> is the number of the operation within the terminator that provides it in the
calling domain.

<operation name> is the name of the operation provided by the terminator in the calling domain

<in param 1> etc. is an input parameter for the bridge operation. Input parameters for bridge
operations have exactly the same syntax and rules as for a regular ASL

operation definitiona.

a.In iUML Simulator there are limitations as to the use that can be made of a bridge input parameter within the bridge. See
release notes for details.

<out param 1> etc. is an output parameter for the bridge operation. Output parameters for bridg
operations have exactly the same syntax and rules as for a regular ASL

operation definitiona.

<domain_1_keyletter> etc. are the short form names for the domains on which operations are to be invok
UML ASL Reference Guide for ASL Language Level 2.5 Page 87



ASL for Bridge Operations
Example: # State ASL invokes bridge operation provided by the
# Robot Hardware (RHW) terminator
[ arm_status ] =  RHW1: getArmStatus [ robot_id ]

# Bridge mapping definition made in the context of a build that
# uses the PIO domain to implement the operation
define bridge  ODMS: RHW1_getArmStatus
input  robot_id : Integer
output  status : Arm_Status
$USE PIO

# Calculate mapping to correct register
registerNumber = ( robot_id *  7 ) +  3

# Invoke domain scoped operation provided by the PIO domain
[ registerValue ] =  PIO3 :: getRegisterValue [ registerNumber ]

# Map result back
if  registerValue = 0 then

status = ‘Retracted’
else

status = ‘Extended’
endif

$ENDUSE

enddefine
Page 88 Kennedy Carter  2003



Such
ain.

d

15.6 Definition and Invocation of Object Scoped Bridges

An object scoped bridge is one that implements an operation provided by a
terminator that represents the counterpart of a class in the calling domain.  
terminators are thus always associated with a specific class in the calling dom

The object scoped bridge definition and invocation syntax is:

Definition Syntax:

define instance bridge  <invoking domain kl> : <terminator kl><operation number> _<operation name>
instance this: <class name>
input  <in param 1> : <in param 1 type> ,  <in param 2> : <in param 2 type> ,  ...
output  <out param 1> : <out param 1 type>, ...

<asl statements in the context of invoking domain>
$USE <domain_1_keyletter>

<ASL statements requiring visibility of domain_1>
$ENDUSE
$USE <domain_2_keyletter >

<ASL statements requiring visibility of domain_2>
$ENDUSE

enddefine

Invocation Syntax:

[ <out param 1> , ... ] =  <terminator kl><operation number> : <operation name> [ <in param 1>, \
<in param 2. \
... ] on counterpart

Where:

<invoking domain KL> is a convenient short form of the name of the calling domain.  This name
must be defined within the context of the system into which this domain is
assembled, and must be unique within that context.

<terminator KL> is the key letter of the terminator which provides the bridge operation in the
calling domain.

<operation number> is the number of the operation within the terminator that provides it in the
calling domain.

<operation name> is the name of the terminator operation as seen by the calling domain.

<class name> is the name of the class with which the counterpart terminator is associate
in the calling domain

<in param 1> etc. is an input parameter for the bridge operation. Input parameters for bridge
operations have exactly the same syntax and rules as for a regular ASL

operation definitiona.

a.In iUML Simulator there are limitations as to the use that can be made of a bridge input parameter within the bridge. See
release notes for details.

<out param 1> etc. is an output parameter for the bridge operation. Output parameters for
bridge operations have exactly the same syntax and rules as for a regular

ASL operation definitiona.

<domain_1_name> etc. are the short form names for the domains on which operations are to be
invoked.
UML ASL Reference Guide for ASL Language Level 2.5 Page 89



ASL for Bridge Operations

ween
ister

rt
Notes: 1. Any ASL statement within the bridge may use the handle this.

2. “counterpart” is an ASL keyword. The interpretation of the line of as
invoking the bridge is that it is being invoked on “the counterpart of this ”. It is
the use of the “ on counterpart ” in the invocation that provides the value
of “this”  in the bridge.

3. The “ on counterpart ” clause can only be used in a context where this
is valid and where this refers to a class which partakes in a counterpart
association.

4. The “ on counterpart ” can be replaced by “on  <instance handle>” in the
creation state of the class which is to have the counterpart. This allows the
counterpart operation that is called to set up the counterpart association. In this
case “<instance handle>” must be of the correct type.

5. The operation number must be unique within the context of the terminator
providing the operation in the calling domain.

6. The operation name must be unique across all the operations provided by the
terminator in the calling domain.

7. Any ASL statement within the bridge may set the values of the output

parameters50 .

In the previous example in Section 15.5 on page 87, the correspondence bet
the object of class robot (as indicated by “robot_id” and the appropriate reg
was captured in the line:

registerNumber = ( robot_id *  7 ) + 3

In the following example, this bridge has been enhanced to use a counterpa
association (CPR1) to provide this mapping.  Counterpart associations are
covered in more detail in a later section.

Example:
# State action invokes bridge operation provided by the
# Robot Hardware (RHW) terminator
[ arm_status ] =  RHW1: get_arm_status [ robot_id ] on counterpart

# Bridge mapping definition made in the context of a build that
# uses the PIO domain to implement the operation
define instance bridge  ODMS: RHW1_get_arm_status
instancethis: Robot
input
output  status : Arm_Status
$USE PIO

# Navigate to correct register using the counterpart association
register = this ->  CPR1
# Invoke object scoped operation provided by Register in PIO domain.
[ register_value ] =  REG3: get_register_value [] on  register
# Map result back
if  register_value = 0 then

status = ‘Retracted’
else

status = ‘Extended’
endif

$ENDUSE
enddefine

50.In iUML Simulator the results of all operations and calculations in the bridge should be assigned to local variables. Such
variables should then be assigned to the return parameters.
Page 90 Kennedy Carter  2003



rpart

r’s
rly
d to

ship
15.7 Counterpart Relationship Manipulation

Object scoped bridges may create, delete and navigate instances of counte
relationships.  There are two types of counterpart relationship:

• Counterpart Generalisations

• Counterpart Associations

The context that these are used in is described more fully in Kennedy Carte
xUML method documentation. In particular it should be noted that, particula
in the context of counterpart generalisations, the analyst will not actually nee
write much of the relationship manipulation since this can be generated
automatically by a CASE tool that understands the formalism.

However, this section fully describes the syntax and direct use of the relation
manipulation.

Notes: 1. All counterpart relationship manipulations take place within a defined domain
context of an object scoped bridge. This context is either (by default) that of the
calling domain, or it is an explicit context set by a $USE clause.

2. Counterpart relationship navigations cannot be placed in a navigation chain.

3. Since counterpart relationships are much more restricted than normal
associations and generalisations (no association classes, reflexive
associations or navigation chains), the following sections show each case
individually, rather than generically as was done in Section 8, “Association and
Generalisation,” on page 31.
UML ASL Reference Guide for ASL Language Level 2.5 Page 91



ASL for Bridge Operations

ows:
Counterpart Generalisations

Navigating a Counterpart
Generalisation: The syntax for navigation of a counterpart generalisation is as follows:

<destination handle> = <starting handle> -> CPR <n>. <class name>

Where:

Notes: 1. <class name> is mandatory when navigating from a “generic” object to the
related “specific” object, even if there is only one specific class defined for the
counterpart generalisation.

2. <class name>  is optional when navigating from a “specific” object to the its
related “generic” object.

3. If <starting handle> is undefined when the navigation is executed then
this is considered as a run time error.

Creating an Instance of a
Counterpart

Generalisation: The syntax for creating an instance of a counterpart generalisation is as foll

link-counterpart  <source handle> CPR<n>.<class name> <destination handle>

Where:

Notes: 1. The terms “source” and “destination” are used for the purposes of explanation
only.  As with all associations, counterpart associations are “two way” and can
be navigated from either end.

2. the <class name> clause is optional.

3. If either instance handle is undefined when the statement is executed, then this
is considered to be a run time error.

4. If an attempt is made to link the same two objects together via the same
relationship twice then this is regarded as a run time error.

<destination handle> is the instance handle of the object obtained as a result of the navigation

<starting handle> is the instance handle of the object that is the source of the navigation

CPR<n> is the counterpart generalisation that is being navigated (from<starting

handle>  resulting in<destination handle> )

<class name> is the name of the class that is the destination of the navigation

<source handle> is the single instance handle of the first object to be linked via the
specified counterpart generalisation.

<destination handle> is the single instance handle of the second object to be linked via the
specified counterpart generalisation.

CPR<n> is the counterpart generalisation that is to be created (linked) between the
<source handle>  and the <destination handle> .

<class name> is the name of the destination class and is optional.a

a. iUML Simulator  does not accept this optional clause
Page 92 Kennedy Carter  2003



ows:
Deleting an Instance of a
Counterpart

Generalisation: The syntax for deleting an instance of a counterpart generalisation is as foll

unlink-counterpart  <source handle> CPR<n>.<class name> <destination handle>

Where:

Notes: 1. The terms “source” and “destination” are used for the purposes of explanation
only. As with all relationships in xUML, counterpart relationships are “two way”
and can be navigated from either end.

2. The <class name> clause is optional.

3. If the two objects are not linked, or if either instance handle is undefined when
the statement is executed, then this is considered to be a run time error.

<source handle> is the single instance handle of the first object to be unlinked via the
specified counterpart generalisation.

<destination handle> is the single instance handle of the second object to be unlinked via
the specified counterpart generalisation.

CPR<n> is the counterpart generalisation that is to be deleted (unlinked)
between the<source handle>  and the <destination handle> .

<class name> is the name of the destination class and is optionala

a. iUML Simulator  does not accept this optional clause
UML ASL Reference Guide for ASL Language Level 2.5 Page 93



ASL for Bridge Operations

ee

on
Counterpart Associations

Navigating a Counterpart
Association: The syntax for navigation of a counterpart association is as follows:

<destination handle> = <starting handle> -> CPR <n>.” <role phrase> “. <class name>

or:

{ <destination handle> } =  <starting handle> -> CPR <n>.” <role phrase> “. <class name>

Where:

Notes: 1. <class name>  and <role phrase>  are optional51

2. If the <starting handle> is undefined when the navigation is executed then this
is considered as a run time error.

3. The navigation will return a set if the multiplicity of the counterpart association
is many valued in the direction of navigation and is single valued otherwise.

<destination handle> is the instance handle of the object obtained as a result of the navigation (S
Note 3 below).

{<destination handle set>} is the instance handle set for the objects obtained as a result of the navigati
(See Note 3 below).

<starting handle> is the instance handle of the object that is the source of the navigation

CPR<n> is the counterpart association that is being navigated (from<starting

handle>  resulting in<destination handle> or {<destination

handle set>} ).

<class name> is the name of the class that is the destination of the navigation and is
optional

<role phrase> is the role phrase appropriate to the destination class and is optional

51.iUML Simulator does not accept the presence of role phrases in counterpart association manipulations.
Page 94 Kennedy Carter  2003



s:

Creating an Instance of a
Counterpart Association: The syntax for creating an instance of a counterpart association is as follow

link-counterpart  <source handle> CPR<n>.” <role phrase> “. <class name> <destination handle>

Where:

Notes: 1. The terms “source” and “destination” are used for the purposes of explanation
only.  As with all associations, counterpart associations are “two way” and can
be navigated from either end.

2. the <class name> and <role phrase> clauses are optional.

3. If either instance handle is undefined when the statement is executed, then this
is considered to be a run time error.

4. If an attempt is made to link the same two objects together via the same
association twice then this is regarded as a run time error.

<source handle> is the single instance handle of the first object to be linked via the specified
counterpart association.

<destination handle> is the single instance handle of the second object to be linked via the
specified counterpart association.

CPR<n> is the counterpart association that is to be created (linked) between the
<source handle>  and the <destination handle> .

<class name> is the name of the destination class and is optionala

a. iUML Simulator  does not accept this optional clause

<role phrase> is the role phrase appropriate to navigating from the source to the
destination class and is optional
UML ASL Reference Guide for ASL Language Level 2.5 Page 95



ASL for Bridge Operations

s:

Deleting an Instance of a
Counterpart Association: The syntax for deleting an instance of a counterpart association is as follow

unlink-counterpart <source handle> CPR<n>.” <rolePhrase> “. <class name> <destination handle>

Where:

Notes: 1. The terms “source” and “destination” are used for the purposes of explanation
only. As with all associations, counterpart associations are “two way” and can
be navigated from either end.

2. The <class name> and <role phrase> clauses are optional.

3. If the two objects are not linked, or if either instance handle is undefined when
the statement is executed, then this is considered to be a run time error.

<source handle> is the single instance handle of the first object to be unlinked via
the specified counterpart association.

<destination handle> is the single instance handle of the second object to be unlinked
via the specified counterpart association.

CPR<n> is the counterpart association that is to be deleted (unlinked)
between the<source handle>  and the <destination

handle> .

<class name> is the name of the destination class and is optionala

a. iUML Simulator  does not accept this optional clause

<rolePhrase> is the role phrase appropriate to navigating from the source to the
destination class and is optional
Page 96 Kennedy Carter  2003



ould
rts
r in

t.

e

e

15.8 Definition & Invocation for a Signal Bridge

As indicated at the start of this section on bridges, signals to terminators sh
be avoided in favour of terminator operations. However, ASL 2.5 still suppo
the older construct. A bridge that implements a signal received by a terminato
the invoking domain is defined in ASL as follows:

Definition Syntax:

define bridge  <invoking domain keyletter> : <terminator signal name>
input  <in param1> : <in param 1 type> ,  ....
output
<asl statements in the context of invoking domain>
$USE <domain_1_keyletter>

<ASL statements requiring visibility of domain_1>
$ENDUSE
$USE <domain_2_keyletter>

<ASL statements requiring visibility of domain_2>
$ENDUSE
...
enddefine

Where:

Note: 1. such a bridge may not return output parameters, but the output  statement
must be present.

Example: # State action generates terminator signal
generate  ROBHW7: extendArm ( robot_id )

# Bridge definition
define bridge  ODMS: ROBHW7_extendArm
input  robot_id:Integer
output

$USE PIO
# Calculate mapping to correct register
registerNumber = ( robot_id *  7 ) +  1

# Invoke domain scoped operation provided by PIO domain
[] =  PIO4 :: setRegisterValue [ registerNumber , 1 ]

$ENDUSE
enddefine

<invoking domain keyletter> is a convenient short form of the name of the calling domain. This
name must be defined within the context of the system into which
this domain is assembled, and must be unique within that contex

<terminator signal name> is the name of the signal as seen by the generating domain. Not
that the “:” in the signal label becomes a “_” character (see
example below).

<in param 1> etc. refer to the signal parameters and have exactly the same syntax
and rules as for a regular ASL operation definition.

<domain_1_keyletter> etc. are the short form names for the domains on which operations ar
to be invoked.
UML ASL Reference Guide for ASL Language Level 2.5 Page 97



ASL for Bridge Operations
Page 98 Kennedy Carter  2003



y of

code

such
16 Native Language Inserts

The use of $INLINE

ASL allows analysts to insert sections of native language code into the bod
the ASL.

Syntax:

$INLINE
<native language statements>

$ENDINLINE

The precise effect of this is architecture dependant, but will involve the ASL
translator simply dropping the native language statements into the generated
without modification.  Clearly the nature of the translation mapping must be
understood before such native statements can be written.  As a result the
statements will be highly unstable against changes in the architecture and so
sections should be used with great caution.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 99



Native Language Inserts
Page 100 Kennedy Carter  2003



ribes
ed
iled
such
ould,

n be
will
ugh

at is
d by
uch

 to
d to

l

17 Appendix A: Requirements for an ASL

The purpose of analysis is to understand a problem domain and to specify
behaviour that will meet a set of requirements. To this end the analyst desc
a system in terms of Classes and Interacting State machines with well defin
processing actions. The xUML models produced should be sufficiently deta
and precise that they are capable of being “tested” against external criteria (
as external reality or desired system behaviour) and as such these models sh
in principle, be executable.

The outline requirements that have guided us in the definition of ASL are:

• The ASL must be detailed and precise enough that the resulting models ca
executed without any ambiguity or use of assumptions. Of necessity, this
result in an ASL that has the appearance of a programming language, altho

not necessarily an algorithmic one52 .

• The ASL must be rich enough to specify all the processing that will be
required.  If the language is not sufficiently versatile, then analysts will be
forced to resort to other, perhaps vague, forms of expression.

• The ASL must be readily readable.  It is one thing to create a language th
precise, it is another to produce one that can be quickly and easily scanne
the human reader.  There must always be a place for reviews and other s
procedures, and the ASL must not hinder that activity.

• The ASL must be simple, and rapid to create.  Although a similar problem
the previous requirement, different issues come into play, such as the nee
avoid long complex keywords, or a wealth of different special characters.

• The ASL must be sufficiently rich that automated execution of architectura
mappings becomes feasible.  For example, in order to support “instance
handle” based architectures, it must be possible to recognise association
manipulations clearly and unambiguously.

These requirements have implicit contradictions, for example:

• Short, easy to type keywords can produce cryptic names

52.It should be noted, however, that we are not advocating the inclusion of “design” ideas in an analysis model. The ASL must
allow the analyst to specify processing without assuming any particular computational or other solution. Such detail will be the
subject of another domain.
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 101



Appendix A: Requirements for an ASL

ic
hms

ise
• Many analysts prefer to think algorithmically. However, while an algorithm
specification may be correct, there may be other, more appropriate algorit
that can be used in the implementation.

In defining this ASL, we have attempted to form the best possible comprom
between the competing requirements.
Page 102 Kennedy Carter  2003



 termi-
18 Appendix B: The Keywords of ASL

The following keywords are reserved in ASL and must not be used as the name of any Class,
nator, Domain or Attribute, or data item.

ALREADY_DEFINED delete link-counterpart

Boolean disunion-of loop

Date do not

ERROR else not-equals

FALSE enddefine not-in

Integer endfor of

Real endif one-of

TRUE endloop only

Text endswitch or

Time_of_Day enduse ordered

UNDEFINED equals output

and event reverse

and find structure

append find-all switch

associate find-one then

break find-only this

breakif for to

bridge function unassociate

by generate union-of

case greater-than unique

countof greater-than-or-equal-to unlink

counterpart if unlink-counterpart

create in use

current-date input using

current-time instance where

default intersection-of with

define is
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 103



Appendix B: The Keywords of ASL
Page 104 Kennedy Carter  2003



Index

Symbols
# comment7
$ENDUSE 85
$USE 85
& 76
-> 33
\ ASL newline 7
{} 12
} 7

A
ALREADY_DEFINED 20
and 43
append74

B
base type10
break 16,18
breakif 16,18
bridges

events to terminators97
instance based89
scope in85
type mixing in 85
use of "on counterpart"89

C
case15
comments7
complex structures71
counterpart relationships

counterpart associations94
linking 95
navigation of 94
unlinking 96

counterpart generalisations
linking 92
navigation of 92
unlinking 93

CPR 92,93,94,95,96
countof 12,53,80
CPR 92,93,94,95,96
create19

Create_Timer66
current_date70
current_time70

D
data items9
default 15
define function56,58,60,62
define structure72
delete 24
Delete_Timer66
disunion-of 80
do 16

E
else 16
enddefine56,58,60,72
endfor 16
endif 16
endloop 18
endswitch15
enduse85,87,89,97
ERROR 20
event 67,68
execution rules6
expressions

arithmetic 51
logical 53

external data6

F
find 25
find-all 25
find-one 26
find-only 27
for 16,75
functions

definition 55,56,58,60
invocation 57,59,61

G
generate47
Get_Time_Remaining66

I
if 16
in 16
input 56,58,60
instance

creation 19
intersection-of80
is 73

K
keywords 7

summary103

L
link 40
link-counterpart92,95
logical conditions53
loop 18

N
names7
newline 7
not-in 80

O
of 50
only 12
Operations55

Class Scoped Operations58
Create_Timer66
Domain Scoped Operations56
Object Scoped Operations60

ordered by28,76
output 56,58,60
UML ASL Reference Guide for ASL Language Level 2.5 Revision D Page 105



R
relationship specifications35

Qualified Number35
Qualified Role35
Relationship Number35
Relationship Role35

reverse ordered by28,76

S
scope8
set, definition of12
sets 71
signal generation47
structure5,7

statement termination7
switch 15
switch statement15

T
then 16
this 9,11
TIM1:Set_Timer 67
TIM10:Set_Absolute_Timer68
TIM2:Reset_Timer67
Time 65
Timer Operations65
timer terminator65
to 74
typing, implicit 11

U
UNDEFINED 13
union-of 80
unique 19,80
unlink 41
unlink-counterpart93,96
use 85,87,89,97
using 40

W
where 21,77
with 19

X
xUML Timer 65,66

Operations66
Delete_Timer66
Get_Time_Remaining66

Signals 67
TIM1:Set_Timer 67
TIM10:Set_Absolute_Timer68
TIM2:Reset_Timer67


	Introduction to ASL
	1.1 Manual Revision D
	1.2 Feedback
	1.3 Acknowledgements
	1.4 Footnotes in the ASL Reference Guide

	Update History
	Basic Concepts
	ASL Syntax
	4.1 Overall Structure
	4.2 Comments
	4.3 Names
	4.4 Naming Style

	Data Items in ASL Segments
	5.1 Availability of Data Items
	5.2 Data Item Names
	5.3 Data Types
	5.4 Type Mixing Rules
	5.5 Data Item Multiplicity

	Sequential Logic
	6.1 Switch Statement
	6.2 If Statement
	6.3 For Loop
	6.4 Loop Statement
	6.5 Nested Sequential Logic

	Class and Object Manipulation
	7.1 Identity and Identifying Attributes
	7.2 Creation of Objects
	7.3 Writing Attributes of Objects
	7.4 Reading Attributes of Objects
	7.5 Deletion of Objects
	7.6 Obtaining Instance Handles
	7.7 Manipulating Single Objects and Sets of Objects
	Use of “find-one”
	Use of “find-only”
	Other Ways to Reduce a Set of Objects to a Single Object

	7.8 Ordering of Instance Handle Sets

	Association and Generalisation
	8.1 Association vs. Generalisation
	8.2 Referential Attributes
	8.3 Association Navigation
	8.4 Relationship Specifications
	8.5 Link Creation
	8.6 Link Deletion
	8.7 Generalisation Relationships Revisited
	8.8 Correlated Associative Navigation
	8.9 Multivalued Association Classes
	8.10 Associate and Unassociate
	Addition of a new association object:
	Removal of an existing association object:


	Signal Generation
	Arithmetic and Logical Operations
	10.1 Constants and Limits
	10.2 Arithmetic Calculations
	10.3 Local Variable Assignment
	10.4 Logical Conditions

	Operations
	11.1 ASL Operations in the Context of a Domain Model
	11.2 Defining and Calling an ASL Operation
	11.3 Domain Scoped Operations
	Operation Definition Syntax (for domain scoped operations):
	Operation Invocation Syntax (for domain scoped operations):

	11.4 Class Scoped Operations
	Operation Definition Syntax (for class scoped operations):
	Operation Invocation Syntax (for class scoped operations):

	11.5 Object Scoped Operations
	Operation Definition Syntax (for object scoped operations):
	Operation Invocation Syntax (for object scoped operations):


	Timer and Time Operations
	12.1 The xUML Timer
	Invoking the Operations Provided By the xUML Timer Interface
	Signals Consumed By the xUML Timer
	Examples of ASL that make use of the xUML Timer

	12.2 Current Date and Time

	Complex Datatypes and Sets
	13.1 Supported Structures
	13.2 Definition of Structures
	13.3 Instantiation of Structures
	13.4 Assembly of Sets of Structures
	13.5 Use of Loops to Perform Unpacking of Set Structures
	13.6 Ordering of Sets of Structures
	13.7 Subsets of Sets of Structures

	Sets, Sequences and Bags
	14.1 Equality
	14.2 The Unique Operation
	14.3 The countof Operation
	14.4 Set Combination Operations

	ASL for Bridge Operations
	15.1 Basic Concepts and Terminology
	15.2 Domain Scope Within a Bridge
	15.3 Type Mixing in Bridges
	15.4 Types of Bridge
	15.5 Definition and Invocation of Non-Object Scoped Bridges
	Definition Syntax:
	Invocation Syntax:

	15.6 Definition and Invocation of Object Scoped Bridges
	Definition Syntax:
	Invocation Syntax:

	15.7 Counterpart Relationship Manipulation
	Counterpart Generalisations
	Counterpart Associations

	15.8 Definition & Invocation for a Signal Bridge
	Definition Syntax:


	Native Language Inserts
	Appendix A: Requirements for an ASL
	Appendix B: The Keywords of ASL
	Index

