
BridgePoint® - Automation

Release 3.3 to 4.0
BridgePoint® Customer Support

http://www.projtech.com/support/bpcsa.html

User ID Password

Tel: 800-482-3853 or 520-544-0808
email: support@projtech.com

Automation

ii

Use, examination, reproduction, copying, transfer, and/or disclosure of
“BridgePoint® - Automation”

to others is prohibited except by express agreement with
Project Technology, Inc.

Copyright 1992-1999
Project Technology, Inc. and its licensors.

7400 N. Oracle Road, Suite 365 Tucson, AZ 85704-6342 USA
All rights reserved.

The Database Management portion of this product is based on:
ObjectStore®

Copyright Object Design, Inc. 1988-1998
All rights reserved. Patent Pending.

The License Management portion of this product is based on:
Elan License Manager

Copyright Rainbow Technologies, Inc. 1998
All rights reserved.

All other products or services mentioned in this document are identified by the trademarks, service
marks, or product names as designated by the companies who market those products.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in

subparagraphs (c)(1)(ii) of the
Rights in Technical Data and Computer Software

clause at 252.227-7013 (48 CFR, Ch.2).
Contractors/manufacturers are

Project Technology, Inc., 7400 N. Oracle Rd., Ste. 365, Tucson, AZ 85704-6342 USA
Object Design, Inc., 25 Burlington Mall Road, Burlington, MA 01803 USA

Rainbow Technologies, Inc. USA

Version 4.0-1.3

Documentation Roadmap
This manual is part of the three manual set for the BridgePoint family. Here is an
overview of the three manuals.

BridgePoint - OOA
This manual is built around the process of doing OOA. The OOA process is
broken down into steps and each step has Process, Method, and Automation
sections in the manual. The Process section addresses who does the step, how long
it should take, the outputs of the step, and quality issues. The Method section
describes the underlying method issues for this step. The Automation section
describes how the BridgePoint tool set is used to automate the OOA step.

BridgePoint - Automation
This manual is built around the process of doing file generation using Design By
Translation techniques using the BridgePoint Generator tools.

BridgePoint - Tool Guide
This manual deals with BridgePoint tool specific topics that are independent of
OOA. Included in this manual are Tool Fundamentals, Specifying User Properties,

iv Documentation Roadmap
General Model Editing, Printing, Version Management, License Management,
Importing and Exporting Data, and BridgePoint Installation.

Table of Contents
TASK Architecture Blueprint 1

STEPSTEP 7Architecture Characterization 3

 7.1 Method 5

 7.1.1 Implementation Technologies 6

 7.1.2 Architectural Decisions 8

STEPSTEP 8Architecture Design 13

 8.2 Method 15

 8.2.1 Subsystem ‘Subsystem’ 17

 8.2.2 Subsystem ‘Object’ 41

 8.2.3 Subsystem ‘Relationship’ 61

 8.2.4 Subsystem ‘Communication & Access’ 81

 8.2.5 Subsystem ‘State Model’ 97

vi Table of Contents
TASK SW Arch Implementation 121

STEPSTEP 9Develop Structural Archetypes 123

 9.1 Method 125

 9.1.1 General Language Attributes 126

 9.1.2 Literal Text 127

 9.1.3 Data Access Control Statements 128

 9.1.4 Transformer Control Statements 135

 9.1.5 Tester Control Statements 137

 9.1.6 Function Control Statements 138

 9.1.7 File Control Statements 141

 9.1.8 Rvalues 143

 9.1.9 Expressions 145

 9.1.10 Substitution Variables 151

 9.2 Automation 155

 9.2.1 Overview 155

 9.2.2 Running gen_import 156

 9.2.3 Running gen_file 156

 9.2.4 Using Makefiles 157

STEPSTEP 10Develop Action Archetypes 159

 10.1 Method 161

 10.1.1 Invoking Fragment Generation 163

 10.1.2 Fragment Generation Script 164

 10.1.3 Fragment Generation Functions 166

 10.2 Automation 173

 10.2.1 Overview 173

TASK

 Architecture Blueprint

2 TASK: Architecture Blueprint

STEP 7

Architecture Characterization

4 Step 7: Architecture Characterization

Method 5
 7.1 Method
The Software Architecture Blueprint is a detailed plan of how to make use of a
set of Implementation Technologies to implement the functionality defined by
the OOA.

The following figure shows what a Software Architecture Blueprint includes:

The following sections outline a set of questions which will guide the
determination of the Software Architecture Blueprint. The questions are based
upon our experience and consulting - the list is in no way complete and we invite
additions to the lists based on your experiences.

Application Domain

Implementation Tech-
nology

Implementation Tech-
nology

Implementation Tech-
nology

Software Architecture Domain

So
ft

w
ar

e
A

rc
hi

te
ct

ur
e

B
lu

ep
ri

nt

6 Step 7: Architecture Characterization
 7.1.1 Implementation Technologies

 7.1.1.1 Programming Language:
• C

• C++

• Smalltalk

• ADA

• COBOL

• Fortran

• Object COBOL

• Assembler

• Objective C

• ...

 7.1.1.2 Operating System:
• Mainframe:

• IBM

• ...

• UNIX:

• SunOS

• System V Release 4

• HP-UX

• IRIX

• AIX

• ...

• Lightweight Tasking:

• VxWorks

• pSOS

• ...

• OS/2

Method 7
• Windows

• Windows NT

• ...

 7.1.1.3 Database:
• Custom

• Relational Database:

• Oracle

• Sybase

• Informix

• ...

• Object-Oriented Database:

• ObjectStore

• Gemstone

• Objectivity

• Versant

• ...

 7.1.1.4 User Interface:
• Character Based:

• Custom

• Off-the-Shelf:

• XVT

• ...

8 Step 7: Architecture Characterization
• Graphical User Interface (GUI):

• Custom

• Off-the-Shelf:

• Galaxy

• Motif - COSE

• MS Windows

• XVT

• Openlook - XView

• ...

 7.1.1.5 Implemented Service Domains:
• Alarming

• Measurements

• Audits

• Initialization

• ...

 7.1.2 Architectural Decisions

 7.1.2.1 Data Organization:
• Data Location:

• Centralized

• Distributed:

• Instance Consolidated

• Instance Dispersed

Method 9

t
• Logical Organization:

• One Table/Class per OOA Object

• One or More Table/Class per OOA Object

• 1:1 Objects Aggregated

• 1:M Objects Aggregated (must use design info to specify what M)

• Physical Organization:

• Direct correspondence to Logical Organization

• Static Attributes stored separately from Dynamic Attributes (allows
direct disk to memory pump of static data image)

• Memory Management:

• Operating System, e.g., use default new operator in C++

• Array/Pool - build own specialized instance management mechanisms

• Instance Relationships:

• Object-Oriented Approach: Store Related Instances’ Handles - direc
access to related instances:

• Store handles as Table Offsets

• Store handles as Pointers

• Relational-Oriented Approach: Store Referential Attributes (foreign
keys) and search for related instances:

• Linear Search

• Hashing

• B-Tree

• Relationship Integrity:

• Require all Unconditional Relationships to be instantiated upon object
instance creation

• Allow temporary states of Relationship Conditionality inconsistency

• Referential Attributes:

• Store as part of Physical Organization

• Look up across relationship when accessed

• Derived Attributes:

• Store derived value - re-derive value when dependent data changes

• Derive for each access

10 Step 7: Architecture Characterization
 7.1.2.2 Control Organization:
• Action Organization:

• State Model Consolidated

• Thread Consolidated

• Task Allocation:

• Single Task

• Multi-Task

• Peer-Peer

• Homogeneous

• Heterogeneous

• Client-Server

• Homogeneous

• Heterogeneous

• Event Priority

• Events Processed in order Generated

• Intra-State Model Events Processed first, all other events processed in
order Generated

• Intra-State Model Events Processed first, Inter-State Model Events
Processed next, all other events processed in order Generated

Method 11
• Event Communication Mechanisms:

• Intra-State Model Events:

• 1 Queue

• 1 Queue per Task

• 1 Queue per State Model

• 1 Queue per State Machine

• Function Call

• Inter-State Model Events:

• 1 Queue

• 1 Queue per Task

• 1 Queue per State Model

• 1 Queue per State Machine

• Function Call

• Inward Bound State Model Events:

• 1 Queue

• 1 Queue per Task

• 1 Queue per State Model

• 1 Queue per State Machine

• Function Call

• Outward Bound External Entity Events:

• 1 Queue

• 1 Queue per Task

• 1 Queue per External Entity

• Function Call

• Timers:

• Polling

• Invocation upon Expiration

 7.1.2.3 Source Code Organization:

12 Step 7: Architecture Characterization
• Code Naming:

• Key-letters

• Names

• Arbitrary IDs

• Code Allocation to Files:

• Header Files:

• 1 File per Domain

• 1 File per Subsystem

• 1 File per Object

• Source Files:

• 1 File per Domain

• 1 File per Subsystem

• 1 File per Object

STEP 8

Architecture Design

14 Step 8: Architecture Design

Method 15
 8.2 Method
This Domain is modeling the semantic data items which make up OOA. Note
that this does NOT include the graphical data associated with the models of OOA
- that information is captured in a separate domain.

Completeness of this domain is very important - this OOA is to be used to enable
translation, i.e. source code generation, from an analysis.
CONFIDENTIAL

16 Step 8: OOA of OOA
CONFIDENTIAL

Method 17
 8.2.1 Subsystem ‘Subsystem’
A Subsystem is based on the partitioning of an entire Domain. The number of
Subsystems in a Domain is dependent upon the Domain subject matter and
complexity.

A Subsystem is composed of objects that tend to cluster, i.e., they have many
interconnections with one another but few interconnections with objects in
different clusters.

Inter-Subsystem relationships, communications, and accesses are captured in the
Subsystem Relationship Model (SRM), Subsystem Communication Model
(SCM), and Subsystem Access Model (SAM) respectively.
CONFIDENTIAL

18 Step 8: OOA of OOA

13. Bridge Parameter (S_BPARM)

* BParm_ID
- Brg_ID (R21)
- Name
- DT_ID (R22)

12. Bridge (S_BRG)

* Brg_ID
- EE_ID (R19)
- Name
- Descrip
- Brg_Typ
- DT_ID (R20)

1. Domain (S_DOM)

* Dom_ID
- Name
- Descrip
- Full_Der
- Config_ID

2. Subsystem (S_SS)

* SS_ID
- Name
- Descrip
- Prefix
- Num_Rng
- Dom_ID (R1)

3. External Entity (S_EE)

* EE_ID
- Name
- Descrip
- Key_Lett
- Dom_ID (R8)

5. External Entity Data Item

(S_EEDI)

* EEdi_ID
* EE_ID (R11)
- Name
- Descrip
- DT_ID (R15)

9. Data Type (S_DT)

* *2 DT_ID
*2 Dom_ID (R14)
- Name
- Descrip

10. Core Data Type (S_CDT)

* DT_ID (R17)
- Core_Typ

11. User Data Type (S_UDT)

* DT_ID (R17)
- CDT_ID (R18)
- User_Typ

uses

R19

provides access to

c

is defined
by

R22

defines the type of

c

return
value
defined
by

R20

defines the return value

c

contains

R21

is part ofc

is dat
event

is first level of
partitioning for R1

is partitioned into

c

interacts with

R8

interacts with

c

is vehicl
commun
for

is data
for

R11

can be
accessed
synchronously
via

c

is a presence
in subsystem
model of

is a
presence
of an
external
entity in

defines types within

R14

contains definedc

is
defined
by

R15

defines the type of

c

R16

is defined
by

is a

R17

are defined within

R18

defines domain ofc

abstracts
asynchrono
us
communicat
ion
between
objects in

abstracts
synchronous
data access
between
objects in
CONFIDENTIAL

Method 19

8. External Entity Event Data (S_EEEDT)

* EE_ID (R13) (R13)
* EEevt_ID (R13)
* EEedi_ID (R13)

2. Subsystem (S_SS)

* SS_ID
- Name
- Descrip
- Prefix
- Num_Rng
- Dom_ID (R1)

xternal Entity (S_EE)

E_ID
Name
Descrip
Key_Lett
Dom_ID (R8)

6. External Entity Event (S_EEEVT)

* EEevt_ID
* EE_ID (R10)
- Numb
- Mning
- Are_KL_C
- Cust_KL
- Drv_Lbl (M)
- Descrip

4. External Entity in Model (S_EEM)

* EEmod_ID
* EE_ID (R9)
- Modl_Typ
- SS_ID (R7)

7. External Entity Event Data Item

(S_EEEDI)

* EEedi_ID
* EE_ID (R12)
- Name
- Descrip
- DT_ID (R16)

is carried via

R13

may carry

c

c
is data for
events of

R12

can asynchronously
communicate via

c

is vehicle of
communication
for

R10

can receive
asynchronous
communication via

c

is a presence
in subsystem
model of

R9

is represented by

c

ce

al
n

R7 contains
c

defines the type of

c

101. Object (O_OBJ)

* Obj_ID
- Name
- Numb
- Key_Lett
- Descrip
- SS_ID (R2)

102. Imported Object (O_IOBJ)

* IObj_ID
- Obj_ID (R101)
- Modl_Typ
- SS_ID (R3)

201. Relationship (R_REL)

* Rel_ID
- Numb
- Descrip
- SS_ID (R4)

401. Communication Path (CA_COMM)

* CPath_ID
- SS_ID (R5)

408. Access Path (CA_ACC)

* APath_ID
- SS_ID (R6)
- SM_ID (R416)
- IObj_ID (R425)

abstracts
associations
between
objects in

R4 contains
c

abstracts
asynchrono
us
communicat
ion
between
objects in

R5 contains
c

abstracts
synchronous
data access
between
objects in

R6 contains
c

is contained in
R2 is decomposed into

c

represents an object from
another subsystem in

R3 can contain objects from other subsystems
via c
CONFIDENTIAL

20 Step 8: OOA of OOA
 8.2.1.1 Object and Attribute Descriptions

o 1. Domain (S_DOM)
Domain (Dom_ID, Name, Descrip, Full_Der, Config_ID)

Identifier *: Dom_ID

Description: A typical software system generally consists of distinct and
independent subject matters. A Shlaer/Mellor analysis partition is based
within each of these subject matters - each subject matter is called a
Domain. A Domain is inhabited by its own conceptual entities (called
objects). A domain may be partitioned into subsystems depending upon
it’s complexity. Each Domain is given a mission statement which
provides a charter for the construction of the OOA models.

Domain.Dom_ID

Full Name: Domain Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Domain.Name

Full Name: Domain Name

Attribute Type: Base Attribute

Data Domain: string

Domain.Descrip

Full Name: Domain Description

Attribute Type: Base Attribute

Data Domain: string

Domain.Full_Der

Full Name: Fully Derived Flag

Attribute Type: Base Attribute

Data Domain: boolean
CONFIDENTIAL

Method 21
Description: A flag indicating whether the Object Communication Model
and Object Access Model are fully derived from the information
contained in the Object Information Model and Action Specifications.

Value 0 indicates OCM and OAM are not fully derived.

Value 1 indicates OCM and OAM are fully derived.

Domain.Config_ID

Full Name: Configuration Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Description: The Configuration ID of the version management configuration
which the domain is a part of (See Page 57 of BridgePoint Tool Guide).
This ID can be used to access the V_CONFIG record corresponding to
the Domain/Subsystem Configuration.

o 2. Subsystem (S_SS)
Subsystem (SS_ID, Name, Descrip, Prefix, Num_Rng, Dom_ID)

Identifier *: SS_ID

Description: A Subsystem is based on the partitioning of an entire Domain.
The number of Subsystems in a Domain is dependent upon the Domain
subject matter and complexity.

A Subsystem is composed of objects which tend to cluster, i.e., objects
which have many relationships with one another but few relationships
with objects in different clusters.

Inter-Subsystem relationships, asynchronous communications, and
synchronous accesses are captured in the Subsystem Relationship
Model, Subsystem Communication Model and Subsystem Access
Model, respectively.

Subsystem.SS_ID

Full Name: Subsystem Identifier

Attribute Type: Base Attribute

Data Domain: unique_id
CONFIDENTIAL

22 Step 8: OOA of OOA
Subsystem.Name

Full Name: Subsystem Name

Attribute Type: Base Attribute

Data Domain: string

Subsystem.Descrip

Full Name: Subsystem Description

Attribute Type: Base Attribute

Data Domain: string

Subsystem.Prefix

Full Name: Subsystem Keyletter Prefix

Attribute Type: Base Attribute

Data Domain: string

Description: The subsystem keyletter prefix is used when objects are created
in the subsystem - the subsystem keyletter prefix is used as the default
prefix in the object keyletters.

Subsystem.Num_Rng

Full Name: Subsystem Number Range Start

Attribute Type: Base Attribute

Data Domain: integer

Description: The subsystem number range start is used when objects and
relationships are created in the subsystem - the subsystem number range
start is used as the default auto-numbering start value in for the newly
created Object’s number and newly created Relationship’s number.

Subsystem.Dom_ID

Attribute Type: Referential Attribute

Refers To: Domain.Dom_ID (R1) (See Page 20)

o 3. External Entity (S_EE)
External Entity (EE_ID, Name, Descrip, Key_Lett, Dom_ID)

Identifier *: EE_ID
CONFIDENTIAL

Method 23
Description: An External Entity represents something outside of the Domain
being modeled that interacts with objects within the Domain being
modeled. The interactions are showed by Event Communications in the
Object Communication Models and Data Accesses in the Object Access
Models. Each External Entity is given a unique name and keyletters
within a Domain.

External Entity.EE_ID

Full Name: External Entity Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

External Entity.Name

Full Name: External Entity Name

Attribute Type: Base Attribute

Data Domain: string

External Entity.Descrip

Full Name: External Entity Description

Attribute Type: Base Attribute

Data Domain: string

External Entity.Key_Lett

Full Name: External Entity Key Letters

Attribute Type: Base Attribute

Data Domain: string

External Entity.Dom_ID

Attribute Type: Referential Attribute

Refers To: Domain.Dom_ID (R8) (See Page 20)

o 4. External Entity in Model (S_EEM)
External Entity in Model (EEmod_ID, EE_ID, Modl_Typ, SS_ID)

Identifier *: EE_ID, EEmod_ID
CONFIDENTIAL

24 Step 8: OOA of OOA
Description: The External Entity in Model is the presence of an External
Entity in a model such as the Object Communication Model or Object
Access Model. The same External Entity can be represented by more
than one External Entity in Model in the same model to enhance model
layout.

External Entity in Model.EEmod_ID

Full Name: External Entity in Model Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

External Entity in Model.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity.EE_ID (R9) (See Page 23)

External Entity in Model.Modl_Typ

Full Name: Model Type

Attribute Type: Base Attribute

Data Domain: integer

Description: Value indicates what type of model the External Entity is in:

Value 6 indicates Object Communication Model

Value 7 indicates Object Access Model

External Entity in Model.SS_ID

Attribute Type: Referential Attribute

Refers To: Subsystem.SS_ID (R7) (See Page 21)

o 5. External Entity Data Item (S_EEDI)
External Entity Data Item (EEdi_ID, EE_ID, Name, Descrip, DT_ID)

Identifier *: EE_ID, EEdi_ID

Description: Interactions between Objects and External Entities shown in the
Object Access Models involve the access of data. An External Entity
Data Item is a characteristic of an External Entity that an Object may
read.
CONFIDENTIAL

Method 25
External Entity Data Item.EEdi_ID

Full Name: External Entity Data Item Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

External Entity Data Item.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity.EE_ID (R11) (See Page 23)

External Entity Data Item.Name

Full Name: External Entity Data Item Name

Attribute Type: Base Attribute

Data Domain: string

External Entity Data Item.Descrip

Full Name: External Entity Data Item Description

Attribute Type: Base Attribute

Data Domain: string

External Entity Data Item.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R15) (See Page 29)

o 6. External Entity Event (S_EEEVT)
External Entity Event (EEevt_ID, EE_ID, Numb, Mning, Are_KL_C,

Cust_KL, Drv_Lbl, Descrip)

Identifier *: EE_ID, EEevt_ID

Description: An External Entity Event identifies an interaction between an
Object and an External Entity and is captured on an Object
Communication Model. Each External Entity Event is given a unique
label.

External Entity Event.EEevt_ID

Full Name: External Entity Entity Event Identifier
CONFIDENTIAL

26 Step 8: OOA of OOA
Attribute Type: Base Attribute

Data Domain: unique_id

External Entity Event.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity.EE_ID (R10) (See Page 23)

External Entity Event.Numb

Full Name: External Entity Entity Event Number

Attribute Type: Base Attribute

Data Domain: integer

External Entity Event.Mning

Full Name: External Entity Entity Event Meaning

Attribute Type: Base Attribute

Data Domain: string

External Entity Event.Are_KL_C

Full Name: Are Key Letters Custom Flag

Attribute Type: Base Attribute

Data Domain: boolean

Description: This is a flag that indicates whether custom label keyletters are
used for the External Entity Event.

Value 0 indicates custom label keyletters are used.

Value 1 indicates External Entity keyletters are used.

External Entity Event.Cust_KL

Full Name: Custom External Entity Event Label Key Letters

Attribute Type: Base Attribute

Data Domain: string

External Entity Event.Drv_Lbl

Full Name: Derived External Entity Event Label

Attribute Type: Derived Base Attribute
CONFIDENTIAL

Method 27
Data Domain: string

Description: Holds the event label - derived by concatenating the keyletters
and the event number.

If the Are_KL_C attribute is 0, then the value of the External
Entity.Name attribute is concatenated with the External
Entity.Numb attribute.

If the Are_KL_C attribute is 1, then the value of the External
Entity.Cust_KL attribute is concatenated with the External
Entity.Numb attribute.

External Entity Event.Descrip

Full Name: External Entity Event Description

Attribute Type: Base Attribute

Data Domain: string

o 7. External Entity Event Data Item (S_EEEDI)
External Entity Event Data Item (EEedi_ID, EE_ID, Name, Descrip,

DT_ID)

Identifier *: EEedi_ID, EE_ID

Description: Synchronous interactions from Objects to External Entities
modeled by allowing an Object to synchronously access the data items
of the External Entity - the interaction is captured on the Object
Communication Model. An External Entity Data Item is a characteristic
of an External Entity.

External Entity Event Data Item.EEedi_ID

Full Name: External Entity Event Data Item Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

External Entity Event Data Item.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity.EE_ID (R12) (See Page 23)
CONFIDENTIAL

28 Step 8: OOA of OOA
External Entity Event Data Item.Name

Full Name: External Entity Event Data Item Name

Attribute Type: Base Attribute

Data Domain: string

External Entity Event Data Item.Descrip

Full Name: External Entity Event Data Item Description

Attribute Type: Base Attribute

Data Domain: string

External Entity Event Data Item.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R16) (See Page 29)

o 8. External Entity Event Data (S_EEEDT)
External Entity Event Data (EE_ID, EEevt_ID, EEedi_ID)

Identifier *: EE_ID, EEevt_ID, EEedi_ID

Description: This object serves as a correlation table.

External Entity Event Data.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity Event.EE_ID (R13) (See Page 26)

Refers To: External Entity Event Data Item.EE_ID (R13) (See Page 27)

External Entity Event Data.EEevt_ID

Attribute Type: Referential Attribute

Refers To: External Entity Event.EEevt_ID (R13) (See Page 25)

External Entity Event Data.EEedi_ID

Attribute Type: Referential Attribute

Refers To: External Entity Event Data Item.EEedi_ID (R13) (See Page 27)
CONFIDENTIAL

Method 29
o 9. Data Type (S_DT)
Data Type (DT_ID, Dom_ID, Name, Descrip)

Identifier *: DT_ID

Identifier *2: DT_ID, Dom_ID

Description: An analyst can assign a data type to the various data items in
the OOA, e.g., object attribute, state model event data item, transformer/
bridge parameter/return value.

This data type does not capture the representation of the data items, but
rather, the characteristics of the data items including:

1. Value Definition, e.g., whole numbers

2. Value Range, e.g., values between 0 and 10

3. Operations, e.g., +, -, *, /

Data Type.DT_ID

Full Name: Data Type Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Data Type.Dom_ID

Attribute Type: Referential Attribute

Refers To: Domain.Dom_ID (R14) (See Page 20)

Data Type.Name

Full Name: Data Type Name

Attribute Type: Base Attribute

Data Domain: string

Data Type.Descrip

Full Name: Data Type Description

Attribute Type: Base Attribute

Data Domain: string
CONFIDENTIAL

30 Step 8: OOA of OOA
o 10. Core Data Type (S_CDT)
Core Data Type (DT_ID, Core_Typ)

Identifier *: DT_ID

Description: Core Data Types are those data types which are fundamental, or
core, to all data types.

Core Data Type.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R17) (See Page 29)

Core Data Type.Core_Typ

Full Name: Core Data Type Core Type

Attribute Type: Base Attribute

Data Domain: integer

Description: Valid Core Types:

0 = void

1 = boolean

2 = integer

3 = real

4 = string

5 = unique_id

6 = current_state

7 = same_as_base

8 = inst_ref<Object>

9 = inst_ref_set<Object>

10 = inst<Event>

11 = inst<Mapping>

12 = inst_ref<Mapping>

o 11. User Data Type (S_UDT)
User Data Type (DT_ID, CDT_ID, User_Typ)

Identifier *: DT_ID
CONFIDENTIAL

Method 31
Description: User Data Types are those data types which have been derived
from the core data types - they typically are derived because more
assumptions can be made about the range of values which can be stored
or they are derived to serve as a common funneling point for several
data items which share some common data type.

User Data Type.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R17) (See Page 29)

User Data Type.CDT_ID

Attribute Type: Referential Attribute

Refers To: Core Data Type.DT_ID (R18) (See Page 30)

User Data Type.User_Typ

Full Name: User Data Type User Type

Attribute Type: Base Attribute

Data Domain: integer

0 = user defined

1 = date

2 = timestamp

3 = inst_ref<Timer>

o 12. Bridge (S_BRG)
Bridge (Brg_ID, EE_ID, Name, Descrip, Brg_Typ, DT_ID)

Identifier *: Brg_ID

Description: A Bridge is a method associated with an External Entity -
bridges can be synchronously called from Action Specifications.

Bridge.Brg_ID

Full Name: Bridge Identifier

Attribute Type: Base Attribute

Data Domain: unique_id
CONFIDENTIAL

32 Step 8: OOA of OOA
Bridge.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity.EE_ID (R19) (See Page 23)

Bridge.Name

Full Name: Bridge Name

Attribute Type: Base Attribute

Data Domain: string

Bridge.Descrip

Full Name: Bridge Description

Attribute Type: Base Attribute

Data Domain: string

Bridge.Brg_Typ

Full Name: Bridge Type

Attribute Type: Base Attribute

Data Domain: integer

0 = user defined

1 = predefined bridge

Bridge.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R20) (See Page 29)

o 13. Bridge Parameter (S_BPARM)
Bridge Parameter (BParm_ID, Brg_ID, Name, DT_ID)

Identifier *: BParm_ID

Description: A parameter to a bridge.

Bridge Parameter.BParm_ID

Full Name: Bridge Parameter Identifier

Attribute Type: Base Attribute
CONFIDENTIAL

Method 33
Data Domain: unique_id

Bridge Parameter.Brg_ID

Attribute Type: Referential Attribute

Refers To: Bridge.Brg_ID (R21) (See Page 31)

Bridge Parameter.Name

Full Name: Bridge Parameter Name

Attribute Type: Base Attribute

Data Domain: string

Bridge Parameter.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R22) (See Page 29)
CONFIDENTIAL

34 Step 8: OOA of OOA
 8.2.1.2 Relationship Descriptions

Ø R1
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Domain is partitioned into Subsystem

Subsystem is first level of partitioning for Domain

Formalized By: Domain.Dom_ID

Ø R2
Relationship Type: Simple

Multiplicity/Conditionality: 1:Mc

Object is contained in Subsystem

Subsystem is decomposed into Object

Formalized By: Subsystem.SS_ID

Ø R3
Relationship Type: Simple

Multiplicity/Conditionality: 1:Mc

Imported Object represents an object from another subsystem in Subsystem

Subsystem can contain objects from other subsystems via Imported Object

Formalized By: Subsystem.SS_ID

Ø R4
Relationship Type: Simple

Multiplicity/Conditionality: 1:Mc

Relationship abstracts associations between objects in Subsystem

Subsystem contains Relationship

Formalized By: Subsystem.SS_ID
CONFIDENTIAL

Method 35
Ø R5
Relationship Type: Simple

Multiplicity/Conditionality: 1:Mc

Communication Path abstracts asynchronous communication between
objects in Subsystem

Subsystem contains Communication Path

Formalized By: Subsystem.SS_ID

Ø R6
Relationship Type: Simple

Multiplicity/Conditionality: 1:Mc

Access Path abstracts synchronous data access between objects in
Subsystem

Subsystem contains Access Path

Formalized By: Subsystem.SS_ID

Ø R7
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Subsystem contains External Entity in Model

External Entity in Model is a presence of an external entity in Subsystem

Formalized By: Subsystem.SS_ID

Ø R8
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Domain interacts with External Entity

External Entity interacts with Domain

Formalized By: Domain.Dom_ID

Ø R9
Relationship Type: Simple
CONFIDENTIAL

36 Step 8: OOA of OOA
Multiplicity/Conditionality: Mc:1

External Entity is represented by External Entity in Model

External Entity in Model is a presence in subsystem model of External
Entity

Formalized By: External Entity.EE_ID

Ø R10
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity can receive asynchronous communication via External
Entity Event

External Entity Event is vehicle of communication for External Entity

Formalized By: External Entity.EE_ID

Ø R11
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity can be accessed synchronously via External Entity Data Item

External Entity Data Item is data for External Entity

Formalized By: External Entity.EE_ID

Ø R12
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity can asynchronously communicate via External Entity Event
Data Item

External Entity Event Data Item is data for events of External Entity

Formalized By: External Entity.EE_ID

Ø R13
Relationship Type: Associative

Multiplicity/Conditionality: 1-(Mc:Mc)
CONFIDENTIAL

Method 37
External Entity Event Data Item is carried via External Entity Event

External Entity Event may carry External Entity Event Data Item

Formalized By: External Entity Event.EE_ID, External Entity
Event.EEevt_ID, External Entity Event Data Item.EEedi_ID, External
Entity Event Data Item.EE_ID

Ø R14
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Domain contains defined Data Type

Data Type defines types within Domain

Formalized By: Domain.Dom_ID

Ø R15
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Data Type defines the type of External Entity Data Item

External Entity Data Item is defined by Data Type

Formalized By: Data Type.DT_ID

Ø R16
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Data Type defines the type of External Entity Event Data Item

External Entity Event Data Item is defined by Data Type

Formalized By: Data Type.DT_ID

Ø R17
Relationship Type: Subtype/Supertype

Subtypes: User Data Type, Core Data Type

Formalized By: Data Type.DT_ID
CONFIDENTIAL

38 Step 8: OOA of OOA
Ø R18
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Core Data Type defines domain of User Data Type

User Data Type are defined within Core Data Type

Formalized By: Core Data Type.DT_ID

Ø R19
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity uses Bridge

Bridge provides access to External Entity

Formalized By: External Entity.EE_ID

Ø R20
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Data Type defines the return value Bridge

Bridge return value defined by Data Type

Formalized By: Data Type.DT_ID

Ø R21
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Bridge is part of Bridge Parameter

Bridge Parameter contains Bridge

Formalized By: Bridge.Brg_ID

Ø R22
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1
CONFIDENTIAL

Method 39
Data Type defines the type of Bridge Parameter

Bridge Parameter is defined by Data Type

Formalized By: Data Type.DT_ID
CONFIDENTIAL

40 Step 8: OOA of OOA
CONFIDENTIAL

Method 41
 8.2.2 Subsystem ‘Object’
An Object is the abstraction of real world things that have the same
characteristics and conform to a given set of rules. An Object is assigned to
exactly one Subsystem. Objects fall into many categories, some of which are
tangible things, roles, interactions and specifications. Objects that have
interesting behavior are given a lifecycle which is modeled by a State Model
CONFIDENTIAL

42 Step 8: OOA of OOA

112. Transformer (O_TFR)

* Tfr_ID
- Obj_ID (R115)
- Name
- Descrip
- DT_ID (R116)

113. Transformer Parameter (O_TPARM)

* TParm_ID
- Tfr_ID (R117)
- Name
- DT_ID (R118)

101. Object

* Obj_ID
- Name
- Numb
- Key_Let
- Descrip
- SS_ID (R

103. Attribute (O_ATTR)

* Attr_ID
* Obj_ID (R102) (R103)
- PAttr_ID (R103)
- Name (M)
- Descrip
- Prefix
- Root_Nm
- Pfx_Mod
- DT_ID (R114)

105. Object Identifier

* Attr_ID (R105)
* Obj_ID (R105) (R1
* Oid_ID (R105)

106. Base Attribute (O_BATTR)

* Attr_ID (R106)
* Obj_ID (R106)

107. Derived Base Attribute (O_DBATTR)

* Attr_ID (R107)
* Obj_ID (R107)

108. New Base Attribute (O_NBATTR)

* Attr_ID (R107)
* Obj_ID (R107)

109. Referential Attribute (O_RATTR)

* Attr_ID (R106)
* Obj_ID (R106)
- BAttr_ID (R113c)
- BObj_ID (R113c)
- Ref_Mode

110. Attribute Reference in Object (O_REF)

* Obj_ID (R108) (R111)
* RObj_ID (R111)
* ROid_ID (R111)
* RAttr_ID (R111)
* Rel_ID (R111) (R111)
* OIR_ID (R111)
* ROIR_ID (R111)
- Attr_ID (R108)
*2 ARef_ID
- PARef_ID (R112)
- Is_Cstrd
- Descrip

may contain
R115

is associated with

c

contains

R117

is part of a

c

abstracts
characteristics

R102

has
characteristics
abstracted by

cprecedes

R103

succeeds

c

c

is made up of

R10

c

is a

R106

is aR107
is resolved by

R108

resolves

succeeds

R112

precedes

c

c

can be the base of

R113

navigates back
to

c

9. Data Type (S_DT)

* *2 DT_ID
*2 Dom_ID (R14)
- Name
- Descrip

defines the
type of

R118

is defined by

c

defines the type of the
return code

R116

return
code is
defined
by

c

defines the
type of

R114

is defined
by

c

CONFIDENTIAL

Method 43

101. Object (O_OBJ)

* Obj_ID
- Name
- Numb
- Key_Lett
- Descrip
- SS_ID (R2)

102. Imported Object (O_IOBJ)

* IObj_ID
- Obj_ID (R101)
- Modl_Typ
- SS_ID (R3)

104. Object Identifier (O_ID)

* Oid_ID
* Obj_ID (R104)

105. Object Identifier Attribute (O_OIDA)

* Attr_ID (R105)
* Obj_ID (R105) (R105)
* Oid_ID (R105)

TR)

ct (O_REF)

111. Referred To Identifier Attribute (O_RTIDA)

* Attr_ID (R110)
* Obj_ID (R110) (R110)
* Oid_ID (R110) (R110)
* Rel_ID (R110)
* OIR_ID (R110)

ated with represents R101

has presence in
other
subsystems via

c

acts
acteristics

s
aracteristics
stracted by

identifies

R104

is identified byc

is made up of

R105

is part of
c

c

succeeds

R112

precedes

c

c

203. Referred To Object in Rel (R_RTO)

* *2 Obj_ID (R203) (R109)
* *2 Rel_ID (R203)
* *2 OIR_ID (R203)
*2 Oid_ID (R109)

204. Referring Object in Rel (R_RGO)

* Obj_ID (R203)
* Rel_ID (R203)
* OIR_ID (R203)

is identified
in this
relationship
by

R109

identifies
for this
relationshi
p

c

c

identifies for
this
relationship

R110

is identified
in this
relationship
by

c

refers
across
relationship
via

R111

is used to
refer to
object by
CONFIDENTIAL

44 Step 8: OOA of OOA
 8.2.2.1 Object and Attribute Descriptions

o 101. Object (O_OBJ)
Object (Obj_ID, Name, Numb, Key_Lett, Descrip, SS_ID)

Identifier *: Obj_ID

Description: An Object represents an abstraction of a real world thing. All
instances of an Object have the same characteristics and conform to the
same set of rules. The characteristics of an Object are captured as
attributes. Each Object with a Domain are assigned a unique names,
numbers, and keyletters.

Object.Obj_ID

Full Name: Object Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Object.Name

Full Name: Object Name

Attribute Type: Base Attribute

Data Domain: string

Object.Numb

Full Name: Object Number

Attribute Type: Base Attribute

Data Domain: integer

Object.Key_Lett

Full Name: Object Keyletters

Attribute Type: Base Attribute

Data Domain: string

Object.Descrip

Full Name: Object Description

Attribute Type: Base Attribute
CONFIDENTIAL

Method 45
Data Domain: string

Object.SS_ID

Attribute Type: Referential Attribute

Refers To: Subsystem.SS_ID (R2) (See Page 21)

o 102. Imported Object (O_IOBJ)
Imported Object (IObj_ID, Obj_ID, Modl_Typ, SS_ID)

Identifier *: IObj_ID

Description: Objects can have interactions with Objects in other Subsystems.
In order to capture these spanning interactions, Objects can be imported
into another subsystem. Spanning interactions can be relationships,
event communications, or data accesses and are captured in the Object
Information Model, Object Communication Model, and Object Access
Model, respectively. Spanning interactions provide the data for
derivation of the Subsystem Relationship Model, Subsystem
Communication Model, and Subsystem Access Model.

Imported Object.IObj_ID

Full Name: Imported Object Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Imported Object.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R101) (See Page 44)

Imported Object.Modl_Typ

Full Name: Model Type

Attribute Type: Base Attribute

Data Domain: integer

Description: Value indicates what type of model the Imported Object is in:

Value 5 indicates Object Information Model

Value 6 indicates Object Communication Model
CONFIDENTIAL

46 Step 8: OOA of OOA
Value 7 indicates Object Access Model

Imported Object.SS_ID

Attribute Type: Referential Attribute

Refers To: Subsystem.SS_ID (R3) (See Page 21)

o 103. Attribute (O_ATTR)
Attribute (Attr_ID, Obj_ID, PAttr_ID, Name, Descrip, Prefix, Root_Nam,

Pfx_Mode, DT_ID)

Identifier *: Attr_ID, Obj_ID

Description: An Attribute is an abstraction of a single characteristic
possessed by an Object. Usually Objects contain a set of attributes to
completely capture all pertinent information. Each Attribute is given a
unique name within an Object.

Attribute.Attr_ID

Full Name: Attribute Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Attribute.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R102) (See Page 44)

Refers To: Attribute.Obj_ID (R103) (See Page 46)

Attribute.PAttr_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Attr_ID (R103) (See Page 46)

Attribute.Name

Full Name: Attribute Name

Attribute Type: Base Attribute

Data Domain: string
CONFIDENTIAL

Method 47
Attribute.Descrip

Full Name: Attribute Description

Attribute Type: Base Attribute

Data Domain: string

Attribute.Prefix

Full Name: Attribute Name Prefix

Attribute Type: Base Attribute

Data Domain: string

Attribute.Root_Nam

Full Name: Attribute Name Root

Attribute Type: Base Attribute

Data Domain: string

Attribute.Pfx_Mode

Full Name: Attribute Name Prefix Mode

Attribute Type: Base Attribute

Data Domain: integer

0 = uses no prefix

1 = uses local prefix

2 = uses referred to prefix

Attribute.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R114) (See Page 29)

o 104. Object Identifier (O_ID)
Object Identifier (Oid_ID, Obj_ID)

Identifier *: Oid_ID, Obj_ID

Description: A set of one or more Attributes which uniquely distinguishes
each instance of an object is an Object Identifier. An Object may have
several Identifiers.
CONFIDENTIAL

48 Step 8: OOA of OOA
Object Identifier.Oid_ID

Full Name: Object Identifier Identifier

Attribute Type: Base Attribute

Data Domain: integer

Object Identifier.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R104) (See Page 44)

o 105. Object Identifier Attribute (O_OIDA)
Object Identifier Attribute (Attr_ID, Obj_ID, Oid_ID)

Identifier *: Attr_ID, Obj_ID, Oid_ID

Description: An Attribute that is part of an Object Identifier is an Object
Identifier Attribute.

Object Identifier Attribute.Attr_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Attr_ID (R105) (See Page 46)

Object Identifier Attribute.Obj_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Obj_ID (R105) (See Page 46)

Refers To: Object Identifier.Obj_ID (R105) (See Page 48)

Object Identifier Attribute.Oid_ID

Attribute Type: Referential Attribute

Refers To: Object Identifier.Oid_ID (R105) (See Page 48)

o 106. Base Attribute (O_BATTR)
Base Attribute (Attr_ID, Obj_ID)

Identifier *: Attr_ID, Obj_ID

Description: A Base Attribute is a non-referential attribute.
CONFIDENTIAL

Method 49
Base Attribute.Attr_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Attr_ID (R106) (See Page 46)

Base Attribute.Obj_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Obj_ID (R106) (See Page 46)

o 107. Derived Base Attribute (O_DBATTR)
Derived Base Attribute (Attr_ID, Obj_ID)

Identifier *: Attr_ID, Obj_ID

Description: A Derived Attribute is the result of an algorithm used to derive
the value.

Derived Base Attribute.Attr_ID

Attribute Type: Referential Attribute

Refers To: Base Attribute.Attr_ID (R107) (See Page 46)

Derived Base Attribute.Obj_ID

Attribute Type: Referential Attribute

Refers To: Base Attribute.Obj_ID (R107) (See Page 46)

o 108. New Base Attribute (O_NBATTR)
New Base Attribute (Attr_ID, Obj_ID)

Identifier *: Attr_ID, Obj_ID

Description: A New Base Attribute is a non-derived base attribute.

New Base Attribute.Attr_ID

Attribute Type: Referential Attribute

Refers To: Base Attribute.Attr_ID (R107) (See Page 46)
CONFIDENTIAL

50 Step 8: OOA of OOA
New Base Attribute.Obj_ID

Attribute Type: Referential Attribute

Refers To: Base Attribute.Obj_ID (R107) (See Page 46)

o 109. Referential Attribute (O_RATTR)
Referential Attribute (Attr_ID, Obj_ID, BAttr_ID, BObj_ID, Ref_Mode)

Identifier *: Attr_ID, Obj_ID

Description: A Referential Attribute captures the formalization of a
relationship. A Referential Attribute refers to an Identifying Attribute in
the Object at the other end of the relationship which it formalizes.

Referential Attribute.Attr_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Attr_ID (R106) (See Page 46)

Referential Attribute.Obj_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Obj_ID (R106) (See Page 46)

Referential Attribute.BAttr_ID

Attribute Type: Referential Attribute

Refers To: Base Attribute.Attr_ID (R113) (See Page 49)

Reference IS CONSTRAINED such that Base Attribute related across
R113 is same Base Attribute which is found by navigating back through
the referred to attributes until the Base Attribute is found.

Referential Attribute.BObj_ID

Attribute Type: Referential Attribute

Refers To: Base Attribute.Obj_ID (R113) (See Page 49)

Reference IS CONSTRAINED such that Base Attribute related across
R113 is same Base Attribute which is found by navigating back through
the referred to attributes until the Base Attribute is found.
CONFIDENTIAL

Method 51
Referential Attribute.Ref_Mode

Full Name: Referential Attribute Mode

Attribute Type: Base Attribute

Data Domain: integer

o 110. Attribute Reference in Object (O_REF)
Attribute Reference in Object (Obj_ID, RObj_ID, ROid_ID, RAttr_ID,

Rel_ID, OIR_ID, ROIR_ID, Attr_ID, ARef_ID, PARef_ID, Is_Cstrd,
Descrip)

Identifier *: Obj_ID, RObj_ID, ROid_ID, RAttr_ID, Rel_ID, OIR_ID,
ROIR_ID

Identifier *2: ARef_ID

Description: The Object represents an R# which follows a referential
attribute.

Attribute Reference in Object.Obj_ID

Attribute Type: Referential Attribute

Refers To: Referential Attribute.Obj_ID (R108) (See Page 50)

Refers To: Referring Object in Rel.Obj_ID (R111) (See Page 66)

Attribute Reference in Object.RObj_ID

Attribute Type: Referential Attribute

Refers To: Referred To Identifier Attribute.Obj_ID (R111) (See Page 53)

Attribute Reference in Object.ROid_ID

Attribute Type: Referential Attribute

Refers To: Referred To Identifier Attribute.Oid_ID (R111) (See Page 53)

Attribute Reference in Object.RAttr_ID

Attribute Type: Referential Attribute

Refers To: Referred To Identifier Attribute.Attr_ID (R111) (See Page 53)

Attribute Reference in Object.Rel_ID

Attribute Type: Referential Attribute
CONFIDENTIAL

52 Step 8: OOA of OOA
Refers To: Referring Object in Rel.Rel_ID (R111) (See Page 66)

Refers To: Referred To Identifier Attribute.Rel_ID (R111) (See Page 53)

Attribute Reference in Object.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.OIR_ID (R111) (See Page 66)

Attribute Reference in Object.ROIR_ID

Attribute Type: Referential Attribute

Refers To: Referred To Identifier Attribute.OIR_ID (R111) (See Page 53)

Attribute Reference in Object.Attr_ID

Attribute Type: Referential Attribute

Refers To: Referential Attribute.Attr_ID (R108) (See Page 50)

Attribute Reference in Object.ARef_ID

Full Name: Object Identifier Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Attribute Reference in Object.PARef_ID

Attribute Type: Referential Attribute

Refers To: Attribute Reference in Object.ARef_ID (R112) (See Page 52)

Attribute Reference in Object.Is_Cstrd

Full Name: Attribute Reference in Object Is Constrained Flag

Attribute Type: Base Attribute

Data Domain: boolean

0 = not constrained

1 = constrained

Attribute Reference in Object.Descrip

Full Name: Attribute Reference in Object Description

Attribute Type: Base Attribute
CONFIDENTIAL

Method 53
Data Domain: string

o 111. Referred To Identifier Attribute (O_RTIDA)
Referred To Identifier Attribute (Attr_ID, Obj_ID, Oid_ID, Rel_ID,

OIR_ID)

Identifier *: Obj_ID, Attr_ID, Oid_ID, Rel_ID, OIR_ID

Description: This object serves a linkage between the R# (Attribute
Reference in Object) an the referred to Object Identifier Attribute.

Referred To Identifier Attribute.Attr_ID

Attribute Type: Referential Attribute

Refers To: Object Identifier Attribute.Attr_ID (R110) (See Page 48)

Referred To Identifier Attribute.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object Identifier Attribute.Obj_ID (R110) (See Page 48)

Refers To: Referred To Object in Rel.Obj_ID (R110) (See Page 65)

Referred To Identifier Attribute.Oid_ID

Attribute Type: Referential Attribute

Refers To: Object Identifier Attribute.Oid_ID (R110) (See Page 48)

Refers To: Referred To Object in Rel.Obj_ID (R110) (See Page 66)

Referred To Identifier Attribute.Rel_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Rel_ID (R110) (See Page 65)

Referred To Identifier Attribute.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.OIR_ID (R110) (See Page 66)

o 112. Transformer (O_TFR)
Transformer (Tfr_ID, Obj_ID, Name, Descrip, DT_ID)
CONFIDENTIAL

54 Step 8: OOA of OOA
Identifier *: Tfr_ID

Description: A Transformer is a method associated with an Object -
transformers can be synchronously called from Action Specifications.

Transformer.Tfr_ID

Full Name: Transformer Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Transformer.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R115) (See Page 44)

Transformer.Name

Full Name: Transformer Name

Attribute Type: Base Attribute

Data Domain: string

Transformer.Descrip

Full Name: Transformer Description

Attribute Type: Base Attribute

Data Domain: string

Transformer.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R116) (See Page 29)

o 113. Transformer Parameter (O_TPARM)
Transformer Parameter (TParm_ID, Tfr_ID, Name, DT_ID)

Identifier *: TParm_ID

Description: This object is a parameter to a transformer.
CONFIDENTIAL

Method 55
Transformer Parameter.TParm_ID

Full Name: Transformer Parameter Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Transformer Parameter.Tfr_ID

Attribute Type: Referential Attribute

Refers To: Transformer.Tfr_ID (R117) (See Page 54)

Transformer Parameter.Name

Full Name: Transformer Parameter Name

Attribute Type: Base Attribute

Data Domain: string

Transformer Parameter.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R118) (See Page 29)
CONFIDENTIAL

56 Step 8: OOA of OOA
 8.2.2.2 Relationship Descriptions

Ø R101
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Object has presence in other subsystems via Imported Object

Imported Object represents Object

Formalized By: Object.Obj_ID

Ø R102
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Object has characteristics abstracted by Attribute

Attribute abstracts characteristics of Object

Formalized By: Object.Obj_ID

Ø R103
Relationship Type: Simple

Multiplicity/Conditionality: 1c:1c

Attribute precedes Attribute

Attribute succeeds Attribute

Formalized By: Attribute.Attr_ID, Attribute.Obj_ID

Ø R104
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Object is identified by Object Identifier

Object Identifier identifies Object

Formalized By: Object.Obj_ID
CONFIDENTIAL

Method 57
Ø R105
Relationship Type: Associative

Multiplicity/Conditionality: 1-(Mc:Mc)

Object Identifier is made up of Attribute

Attribute is part of Object Identifier

Formalized By: Attribute.Attr_ID, Attribute.Obj_ID, Object
Identifier.Oid_ID, Object Identifier.Obj_ID

Ø R106
Relationship Type: Subtype/Supertype

Subtypes: Base Attribute, Referential Attribute

Formalized By: Attribute.Attr_ID, Attribute.Obj_ID

Ø R107
Relationship Type: Subtype/Supertype

Subtypes: Derived Base Attribute, New Base Attribute

Formalized By: Base Attribute.Attr_ID, Base Attribute.Obj_ID

Ø R108
Relationship Type: Simple

Multiplicity/Conditionality: M:1

Referential Attribute resolves Attribute Reference in Object

Attribute Reference in Object is resolved by Referential Attribute

Formalized By: Referential Attribute.Attr_ID, Referential Attribute.Obj_ID

Ø R109
Relationship Type: Simple

Multiplicity/Conditionality: 1c:Mc

Referred To Object in Rel is identified in this relationship by Object
Identifier

Object Identifier identifies for this relationship Referred To Object in Rel

Formalized By: Object Identifier.Oid_ID, Object Identifier.Obj_ID
CONFIDENTIAL

58 Step 8: OOA of OOA
Ø R110
Relationship Type: Associative

Multiplicity/Conditionality: 1-(M:Mc)

Referred To Object in Rel is identified in this relationship by Object
Identifier Attribute

Object Identifier Attribute identifies for this relationship Referred To Object
in Rel

Formalized By: Referred To Object in Rel.Obj_ID, Referred To Object in
Rel.Rel_ID, Referred To Object in Rel.OIR_ID, Referred To Object in
Rel.Oid_ID, Object Identifier Attribute.Attr_ID, Object Identifier
Attribute.Obj_ID, Object Identifier Attribute.Oid_ID

Ø R111
Relationship Type: Associative

Multiplicity/Conditionality: 1-(M:M)

Referring Object in Rel refers across relationship via Referred To Identifier
Attribute

Referred To Identifier Attribute is referred to object by Referring Object in
Rel

Formalized By: Referred To Identifier Attribute.Obj_ID, Referred To
Identifier Attribute.Attr_ID, Referred To Identifier Attribute.Oid_ID,
Referred To Identifier Attribute.Rel_ID, Referred To Identifier
Attribute.OIR_ID, Referring Object in Rel.Obj_ID, Referring Object in
Rel.Rel_ID, Referring Object in Rel.OIR_ID

Ø R112
Relationship Type: Simple

Multiplicity/Conditionality: 1c:1c

Attribute Reference in Object succeeds Attribute Reference in Object

Attribute Reference in Object precedes Attribute Reference in Object

Formalized By: Attribute Reference in Object.ARef_ID

Ø R113
Relationship Type: Simple
CONFIDENTIAL

Method 59
Multiplicity/Conditionality: Mc:1

Base Attribute can be the base of Referential Attribute

Referential Attribute navigates back to Base Attribute

Formalized By: Base Attribute.Attr_ID, Base Attribute.Obj_ID

Ø R114
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Data Type defines the type of Attribute

Attribute is defined by Data Type

Formalized By: Data Type.DT_ID

Ø R115
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Object may contain Transformer

Transformer is associated with Object

Formalized By: Object.Obj_ID

Ø R116
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Data Type defines the type of the return code Transformer

Transformer return code is defined by Data Type

Formalized By: Data Type.DT_ID

Ø R117
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Transformer contains Transformer Parameter

Transformer Parameter is part of a Transformer
CONFIDENTIAL

60 Step 8: OOA of OOA
Formalized By: Transformer.Tfr_ID

Ø R118
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Data Type defines the type of Transformer Parameter

Transformer Parameter is defined by Data Type

Formalized By: Data Type.DT_ID
CONFIDENTIAL

Method 61
 8.2.3 Subsystem ‘Relationship’
A Relationship captures an association between things in the real world. A
Relationship is stated in terms of the formal objects that model the real world
entities participating in the association. There can be any number of
Relationships between the same two objects and any object can participate in any
number of Relationships with other objects.
CONFIDENTIAL

62 Step 8: OOA of OOA

202. Object in Relationship (R_OIR)

* Obj_ID (R201)
* Rel_ID (R201)
* OIR_ID
- IObj_ID (R202)

203. Referred To Object in Rel (R_RTO)

* *2 Obj_ID (R203) (R109)
* *2 Rel_ID (R203)
* *2 OIR_ID (R203)
*2 Oid_ID (R109)

204. Referring Object in Rel (R_RGO)

* Obj_ID (R203)
* Rel_ID (R203)
* OIR_ID (R203)

205. Sim

* Rel_I

206. Object As Simple Participant (R_PART)

* Obj_ID (R204)
* Rel_ID (R204) (R207)
* OIR_ID (R204)
- Mult
- Cond
- Txt_Phrs

207. Object As Simple Formalizer (R_FORM)

* Obj_ID (R205)
* Rel_ID (R205) (R208)
* OIR_ID (R205)
- Mult
- Cond
- Txt_Phrs

208. Associ

* Rel_ID (R

209. Object As Associated One Side (R_AONE)

* Obj_ID (R204)
* Rel_ID (R204) (R209)
* OIR_ID (R204)
- Mult
- Cond
- Txt_Phrs

210. Object As Associated Other Side (R_AOTH)

* Obj_ID (R204)
* Rel_ID (R204) (R210)
* OIR_ID (R204)
- Mult
- Cond
- Txt_Phrs

211. Object As Associator (R_ASSR)

* Obj_ID (R205)
* Rel_ID (R205) (R211)
* OIR_ID (R205)
- Mult

212. Subt

(R_SU

* Rel ID

213. Object As Supertype (R_SUPER)

* Obj_ID (R204)
* Rel_ID (R204) (R212)
* OIR_ID (R204)

214. Object As Subtype (R_SUB)

* Obj_ID (R205)
* Rel_ID (R205) (R213)
* OIR_ID (R205)

215. Compo

* Rel_ID (R
- Rel_Chn

216. Object As Composition One Side (R_CONE)

* Obj_ID (R203)
* Rel_ID (R203) (R214)
* OIR_ID (R203)
- Mult (M)
- Cond (M)
- Txt_Phrs

217. Object As Composition Other Side (R_COTH)

* Obj_ID (R203)
* Rel_ID (R203) (R215)
* OIR_ID (R203)
- Mult (M)
- Cond (M)
- Txt_Phrs

is a

R203

is a

R204

is a

R205

R
relates

relates

relates

is
to
s

relates

uses a formalizer

relates

relates

relates

relates

101. Object (O_OBJ)

* Obj_ID
- Name
- Numb
- Key_Lett
- Descrip
- SS_ID (R2)

102. Imported Object (O_IOBJ)

* IObj_ID
- Obj_ID (R101)
- Modl_Typ
- SS_ID (R3)

abstracts association between instances of R201

is used for
spanning
relationships as

R202

may be
represented by

c

c

CONFIDENTIAL

Method 63

201. Relationship (R_REL)

* Rel_ID
- Numb
- Descrip
- SS_ID (R4)

205. Simple Relationship (R_SIMP)

* Rel_ID (R206)

e Participant (R_PART)

07)

e Formalizer (R_FORM)

08)

208. Associative Relationship (R_ASSOC)

* Rel_ID (R206)

ated One Side (R_AONE)

9)

ated Other Side (R_AOTH)

)

ssociator (R_ASSR)

(R211)

212. Subtype/Supertype Relationship

(R_SUBSUP)

* Rel ID (R206)

pertype (R_SUPER)

R212)

Subtype (R_SUB)

5)
5) (R213)
5)

215. Composition Relationship (R_COMP)

* Rel_ID (R206)
- Rel_Chn

sition One Side (R_CONE)

)

ition Other Side (R_COTH)

is a

R206

is related to formalizer via

R207
relates

is related to participant via

R208relates

is related to other side via

R209
relates

is related
to one
side via

R210relates

formalizes
relationshi
p between
associated
objects

R211uses a formalizer

is related to subtypes via

R212relates

is related to supertype via

R213relates

is related to other side via

R214relates

is related to one side via

R215relates

R201

has instance
associations abstractd

c

CONFIDENTIAL

64 Step 8: OOA of OOA
 8.2.3.1 Object and Attribute Descriptions

o 201. Relationship (R_REL)
Relationship (Rel_ID, Numb, Descrip, SS_ID)

Identifier *: Rel_ID

Description: A Relationship captures an association that exists between
things in the real world. A Relationship is stated in terms of the formal
Objects that participate in the association.

Relationship.Rel_ID

Full Name: Relationship Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Relationship.Numb

Full Name: Relationship Number

Attribute Type: Base Attribute

Data Domain: integer

Relationship.Descrip

Full Name: Relationship Description

Attribute Type: Base Attribute

Data Domain: string

Relationship.SS_ID

Attribute Type: Referential Attribute

Refers To: Subsystem.SS_ID (R4) (See Page 21)

o 202. Object in Relationship (R_OIR)
Object in Relationship (Obj_ID, Rel_ID, OIR_ID, IObj_ID)

Identifier *: Obj_ID, Rel_ID, OIR_ID

Description: An Object in Relationship captures the role which an object
plays in participating in a relationship.
CONFIDENTIAL

Method 65
Object in Relationship.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R201) (See Page 44)

Object in Relationship.Rel_ID

Attribute Type: Referential Attribute

Refers To: Relationship.Rel_ID (R201) (See Page 64)

Object in Relationship.OIR_ID

Full Name: Object in Relationship Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

AObject in Relationship.IObj_ID

Attribute Type: Referential Attribute

Refers To: Imported Object.IObj_ID (R202) (See Page 45)

o 203. Referred To Object in Rel (R_RTO)
Referred To Object in Rel (Obj_ID, Rel_ID, OIR_ID, Oid_ID)

Identifier *: Obj_ID, Rel_ID, OIR_ID

Identifier *2: Obj_ID, Rel_ID, OIR_ID, Oid_ID

Description: A Referred To Object in Relationship is an object which
contains identifier attributes which are referred to across the
relationship.

Referred To Object in Rel.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Obj_ID (R203) (See Page 65)

Referred To Object in Rel.Rel_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Rel_ID (R203) (See Page 65)
CONFIDENTIAL

66 Step 8: OOA of OOA
Referred To Object in Rel.OIR_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.OIR_ID (R203) (See Page 65)

Referred To Object in Rel.Oid_ID

Attribute Type: Referential Attribute

Refers To: Object Identifier.Oid_ID (R109) (See Page 48)

o 204. Referring Object in Rel (R_RGO)
Referring Object in Rel (Obj_ID, Rel_ID, OIR_ID)

Identifier *: Obj_ID, Rel_ID, OIR_ID

Description: A referring Object in Relationship is an object which contains
referential attributes which refer to identifying attributes across the
relationship.

Referring Object in Rel.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Obj_ID (R203) (See Page 65)

Referring Object in Rel.Rel_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Rel_ID (R203) (See Page 65)

Referring Object in Rel.OIR_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.OIR_ID (R203) (See Page 65)

o 205. Simple Relationship (R_SIMP)
Simple Relationship (Rel_ID)

Identifier *: Rel_ID

Description: A Simple Relationship is a relationship between two objects
which is formalized with referential attributes.
CONFIDENTIAL

Method 67
Simple Relationship.Rel_ID

Attribute Type: Referential Attribute

Refers To: Relationship.Rel_ID (R206) (See Page 64)

o 206. Object As Simple Participant (R_PART)
Object As Simple Participant (Obj_ID, Rel_ID, OIR_ID, Mult, Cond,

Txt_Phrs)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Description: An Object As Simple Participant is the referred to object in a
simple relationship.

Object As Simple Participant.Obj_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Obj_ID (R204) (See Page 65)

Object As Simple Participant.Rel_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Rel_ID (R204) (See Page 65)

Object As Simple Participant.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.OIR_ID (R204) (See Page 66)

Object As Simple Participant.Mult

Full Name: Multiplicity

Attribute Type: Base Attribute

Data Domain: integer

0 = one

1 = many

Object As Simple Participant.Cond

Full Name: Conditionality

Attribute Type: Base Attribute
CONFIDENTIAL

68 Step 8: OOA of OOA
Data Domain: integer

0 = uncond

1 = cond

Object As Simple Participant.Txt_Phrs

Full Name: Text Phrase

Attribute Type: Base Attribute

Data Domain: string

o 207.Object As Simple Formalizer (R_FORM)
Object As Simple Formalizer (Obj_ID, Rel_ID, OIR_ID, Mult, Cond,

Txt_Phrs)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Description: An Object As Simple Formalizer is the referring object in a
simple relationship.

Object As Simple Formalizer.Obj_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.Obj_ID (R205) (See Page 66)

Object As Simple Formalizer.Rel_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.Rel_ID (R205) (See Page 65)

Object As Simple Formalizer.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.OIR_ID (R205) (See Page 66)

Object As Simple Formalizer.Mult

Full Name: Multiplicity

Attribute Type: Base Attribute

Data Domain: integer

0 = one
CONFIDENTIAL

Method 69
1 = many

Object As Simple Formalizer.Cond

Full Name: Conditionality

Attribute Type: Base Attribute

Data Domain: integer

0 = uncond

1 = cond

Object As Simple Formalizer.Txt_Phrs

Full Name: Text Phrase

Attribute Type: Base Attribute

Data Domain: string

o 208. Associative Relationship (R_ASSOC)
Associative Relationship (Rel_ID)

Identifier *: Rel_ID

Associative Relationship.Rel_ID

Attribute Type: Referential Attribute

Refers To: Relationship.Rel_ID (R206)

o 209. Object As Associated One Side (R_AONE)
Object As Associated One Side (Obj_ID, Rel_ID, OIR_ID, Mult, Cond,

Txt_Phrs)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Object As Associated One Side.Obj_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Obj_ID (R204) (See Page 65)

Object As Associated One Side.Rel_ID

Attribute Type: Referential Attribute
CONFIDENTIAL

70 Step 8: OOA of OOA
Refers To: Referred To Object in Rel.Rel_ID (R204) (See Page 65)

Object As Associated One Side.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.OIR_ID (R204)

Object As Associated One Side.Mult

Full Name: Multiplicity

Attribute Type: Base Attribute

Data Domain: integer

0 = one

1 = many

Object As Associated One Side.Cond

Full Name: Conditionality

Attribute Type: Base Attribute

Data Domain: integer

0 = unconditional

1 = conditional

Object As Associated One Side.Txt_Phrs

Full Name: Text Phrase

Attribute Type: Base Attribute

Data Domain: string

o 210. Object As Associated Other Side (R_AOTH)
Object As Associated Other Side (Obj_ID, Rel_ID, OIR_ID, Mult, Cond,

Txt_Phrs)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Object As Associated Other Side.Obj_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Obj_ID (R204) (See Page 65)
CONFIDENTIAL

Method 71
Object As Associated Other Side.Rel_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Rel_ID (R204) (See Page 65)

Object As Associated Other Side.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.OIR_ID (R204) (See Page 66)

Object As Associated Other Side.Mult

Full Name: Multiplicity

Attribute Type: Base Attribute

Data Domain: integer

0 = one

1 = many

Object As Associated Other Side.Cond

Full Name: Conditionality

Attribute Type: Base Attribute

Data Domain: integer

0 = unconditional

1 = conditional

Object As Associated Other Side.Txt_Phrs

Full Name: Text Phrase

Attribute Type: Base Attribute

Data Domain: string

o 211. Object As Associator (R_ASSR)
Object As Associator (Obj_ID, Rel_ID, OIR_ID, Mult)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Object As Associator.Obj_ID

Attribute Type: Referential Attribute
CONFIDENTIAL

72 Step 8: OOA of OOA
Refers To: Referring Object in Rel.Obj_ID (R205) (See Page 66)

Object As Associator.Rel_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.Rel_ID (R205) (See Page 66)

Object As Associator.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.OIR_ID (R205) (See Page 66)

Object As Associator.Mult

Full Name: Multiplicity

Attribute Type: Base Attribute

Data Domain: integer

0 = one

1 = many

o 212. Subtype/Supertype Relationship (R_SUBSUP)
Subtype/Supertype Relationship (Rel_ID)

Identifier *: Rel_ID

Subtype/Supertype Relationship.Rel_ID

Attribute Type: Referential Attribute

Refers To: Relationship.Rel_ID (R206) (See Page 64)

o 213. Object As Supertype (R_SUPER)
Object As Supertype (Obj_ID, Rel_ID, OIR_ID)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Object As Supertype.Obj_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Obj_ID (R204) (See Page 65)
CONFIDENTIAL

Method 73
Object As Supertype.Rel_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.Rel_ID (R204) (See Page 65)

Object As Supertype.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referred To Object in Rel.OIR_ID (R204) (See Page 66)

o 214. Object As Subtype (R_SUB)
Object As Subtype (Obj_ID, Rel_ID, OIR_ID)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Object As Subtype.Obj_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.Obj_ID (R205) (See Page 66)

Object As Subtype.Rel_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.Rel_ID (R205) (See Page 66)

Object As Subtype.OIR_ID

Attribute Type: Referential Attribute

Refers To: Referring Object in Rel.OIR_ID (R205) (See Page 66)

o 215. Composition Relationship (R_COMP)
Composition Relationship (Rel_ID, Rel_Chn)

Identifier *: Rel_ID

Composition Relationship.Rel_ID

Attribute Type: Referential Attribute

Refers To: Relationship.Rel_ID (R206) (See Page 64)
CONFIDENTIAL

74 Step 8: OOA of OOA
Composition Relationship.Rel_Chn

Full Name: Relationship Chain

Attribute Type: Base Attribute

Data Domain: string

o 216. Object As Composition One Side (R_CONE)
Object As Composition One Side (Obj_ID, Rel_ID, OIR_ID, Mult, Cond,

Txt_Phrs)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Object As Composition One Side.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Obj_ID (R203) (See Page 65)

Object As Composition One Side.Rel_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Rel_ID (R203) (See Page 65)

Object As Composition One Side.OIR_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.OIR_ID (R203) (See Page 65)

Object As Composition One Side.Mult

Full Name: Multiplicity

Attribute Type: Base Attribute

Data Domain: integer

0 = one

1 = many

Object As Composition One Side.Cond

Full Name: Conditionality

Attribute Type: Base Attribute

Data Domain: integer
CONFIDENTIAL

Method 75
0 = unconditional

1 = conditional

Object As Composition One Side.Txt_Phrs

Full Name: Text Phrase

Attribute Type: Base Attribute

Data Domain: string

o 217. Object As Composition Other Side (R_COTH)
Object As Composition Other Side (Obj_ID, Rel_ID, OIR_ID, Mult, Cond,

Txt_Phrs)

Identifier *: Rel_ID, Obj_ID, OIR_ID

Object As Composition Other Side.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Obj_ID (R203) (See Page 65)

Object As Composition Other Side.Rel_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.Rel_ID (R203) (See Page 65)

Object As Composition Other Side.OIR_ID

Attribute Type: Referential Attribute

Refers To: Object in Relationship.OIR_ID (R203) (See Page 65)

Object As Composition Other Side.Mult

Full Name: Multiplicity

Attribute Type: Base Attribute

Data Domain: integer

0 = one

1 = many
CONFIDENTIAL

76 Step 8: OOA of OOA
Object As Composition Other Side.Cond

Full Name: Conditionality

Attribute Type: Base Attribute

Data Domain: integer

0 = unconditional

1 = conditional

Object As Composition Other Side.Txt_Phrs

Full Name: Text Phrase

Attribute Type: Base Attribute

Description: string
CONFIDENTIAL

Method 77
 8.2.3.2 Relationship Descriptions

Ø R201
Relationship Type: Associative

Multiplicity/Conditionality: M-(M:Mc)

Relationship abstracts association between instances of Object

Object has instance associations abstracted by Relationship

Formalized By: Object.Obj_ID, Relationship.Rel_ID

Ø R202
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1c

Imported Object is used for spanning relationships as Object in Relationship

Object in Relationship may be represented by Imported Object

Formalized By: Imported Object.IObj_ID

Ø R203
Relationship Type: Subtype/Supertype

Subtypes: Referred To Object in Rel, Referring Object in Rel, Object As
Composition One Side, Object As Composition Other Side

Formalized By: Object in Relationship.Obj_ID, Object in
Relationship.Rel_ID, Object in Relationship.OIR_ID

Ø R204
Relationship Type: Subtype/Supertype

Subtypes: Object As Simple Participant, Object As Associated One Side,
Object As Associated Other Side, Object As Supertype

Formalized By: Referred To Object in Rel.Obj_ID, Referred To Object in
Rel.Rel_ID, Referred To Object in Rel.OIR_ID
CONFIDENTIAL

78 Step 8: OOA of OOA
Ø R205
Relationship Type: Subtype/Supertype

Subtypes: Object As Simple Formalizer, Object As Associator, Object As
Subtype

Formalized By: Referring Object in Rel.Obj_ID, Referring Object in
Rel.Rel_ID, Referring Object in Rel.OIR_ID

Ø R206
Relationship Type: Subtype/Supertype

Subtypes: Simple Relationship, Associative Relationship, Subtype/
Supertype Relationship, Composition Relationship

Formalized By: Relationship.Rel_ID

Ø R207
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Simple Relationship relates Object As Simple Participant

Object As Simple Participant is related to formalizer via Simple
Relationship

Formalized By: Simple Relationship.Rel_ID

Ø R208
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Simple Relationship relates Object As Simple Formalizer

Object As Simple Formalizer is related to participant via Simple
Relationship

Formalized By: Simple Relationship.Rel_ID

Ø R209
Relationship Type: Simple

Multiplicity/Conditionality: 1:1
CONFIDENTIAL

Method 79
Associative Relationship relates Object As Associated One Side

Object As Associated One Side is related to other side via Associative
Relationship

Formalized By: Associative Relationship.Rel_ID

Ø R210
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Associative Relationship relates Object As Associated Other Side

Object As Associated Other Side is related to one side via Associative
Relationship

Formalized By: Associative Relationship.Rel_ID

Ø R211
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Associative Relationship uses a formalizer Object As Associator

Object As Associator formalizes relationship between associated objects
Associative Relationship

Formalized By: Associative Relationship.Rel_ID

Ø R212
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Subtype/Supertype Relationship relates Object As Supertype

Object As Supertype is related to subtypes via Subtype/Supertype
Relationship

Formalized By: Subtype/Supertype Relationship.Rel_ID

Ø R213
Relationship Type: Simple

Multiplicity/Conditionality: M:1
CONFIDENTIAL

80 Step 8: OOA of OOA
Subtype/Supertype Relationship relates Object As Subtype

Object As Subtype is related to supertype via Subtype/Supertype
Relationship

Formalized By: Subtype/Supertype Relationship.Rel_ID

Ø R214
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Composition Relationship relates Object As Composition One Side

Object As Composition One Side is related to other side via Composition
Relationship

Formalized By: Composition Relationship.Rel_ID

Ø R215
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Composition Relationship relates Object As Composition Other Side

Object As Composition Other Side is related to one side via Composition
Relationship

Formalized By: Composition Relationship.Rel_ID
CONFIDENTIAL

Method 81

An
t
ow
es.
 8.2.4 Subsystem ‘Communication & Access’
Interactions between Objects is modeled by Communication and Access Paths.
Communication Paths model Active Objects that interact via events. Access
Paths model Objects that interact by accessing another Object’s attributes.
Access Path must originate from an Active Object. Objects also may interac
with entities outside of the Domain being modeled. Such interactions are sh
with Communication and Access Paths between Objects and External Entiti
Communication and Access Paths may also cross Subsystem boundaries.
CONFIDENTIAL

82 Step 8: OOA of OOA

401. Communication Path (CA_COMM)

* CPath_ID
- SS_ID (R5)

402. EE to SM Comm Path (CA_EESMC)

* CPath_ID (R401)
- EEmod_ID (R402)
*2 EE_ID (R402)
*2 SM_ID (R403)

403. SM to SM Comm Path (CA_SMSMC)

* CPath_ID (R401)
*2 OSM_ID (R406)
*2 DSM_ID (R407)
- OIObj_ID (R424)
- DIObj_ID (R414)

404. SM to EE Comm Path (CA_SMEEC)

* CPath_ID (R401)
*2 SM_ID (R410)
*2 EE_ID (R411)
- EEmod_ID (R411)

406. SM to SM Event Comm (CA_SMSME)

* CPath_ID (R408)
* SM_ID (R409)
* SMevt_ID (R409)

407. SM to EE Event Comm (CA_SMEEE)

* CPath_ID (R412)
* EE_ID (R413)
* EEevt_ID (R413)

405. EE to SM Event Comm (CA_EESME)

* CPath_ID (R404)
* SM_ID (R405)
* SMevt_ID (R405)

is aR401

is carried by

R408

carries c

is carried by

R404

carriesc

is carried by

R412

carries c

501. State Mode

* SM_ID
- Descrip
- Config_ID

6. External Entity Event (S_EEEVT)

* EEevt_ID
* EE_ID (R10)
- Numb
- Mning
- Are_KL_C
- Cust_KL
- Drv_Lbl (M)
- Descrip

102. Imported Object (O_IOBJ)

* IObj_ID
- Obj_ID (R101)
- Modl_Typ
- SS_ID (R3)

4. External Entity in Model (S_EEM)

* EEmod_ID
* EE_ID (R9)
- Modl_Typ
- SS_ID (R7)

503. State Model Event (SM_EVT)

* *2 SMevt_ID
* *2 SM_ID (R502) (R520)
*2 SMspd_ID (R520)
- Numb
- Mning
- Are_KL_C
- Cust_KL
- Drv_Lbl (M)
- Descrip

has recieved
event
communication
represented by

R407 shows event communcation to

c

ent

R403

shows event communication to

c

destination OBJ can
be represented by

c

originates

R402

originates
from

c
has recieve
event
communications
represented by

R411

shows event
communication to

c

originates

R406

originates from

c

is carried
to other
SMs via

R409

represents
communication of

cis carried to
other SMs
via

R405

represents
communication of

c

represents
communications of

R413

is
carried
to EE

c

originates
from

R410

originates

c
represents the
destination SM for

R414

destination SM
can be
represented by

c

c

origination SM can be
represented by

R424

represents
the
origination
SM for

c

c

origination OBJ can be
represented by

c

CONFIDENTIAL

Method 83

408. Access Path (CA_ACC)

* APath_ID
- SS_ID (R6)
- SM_ID (R416)
- IObj_ID (R425)

 Path (CA_SMEEC)

409. SM to OBJ Access Path (CA_SMOA)

* APath_ID (R415)
* Obj_ID (R417)
- IObj_ID (R420c)

411. SM to OBJ Attribute Access

(CA_SMOAA)

* APath_ID (R418)
* Attr_ID (R419)
* Obj_ID (R419) (R418)

410. SM to EE Access Path (CA_SMEEA)

* APath_ID (R415)
* EE_ID (R421)
- EEmod_ID (R421)

412. SM to EE Data Item Access

(CA_SMEED)

* APath_ID (R422)
* EEdi_ID (R423)
* EE_ID (R423) (R422)

is aR415

is carried by

R418

carriesc

is carried by

R422

carries c

101. Object (O_OBJ)

* Obj_ID
- Name
- Numb
- Key_Lett
- Descrip
- SS_ID (R2)

501. State Model (SM_SM)

* SM_ID
- Descrip
- Config_ID

103. Attribute (O_ATTR)

* Attr_ID
* Obj_ID (R102) (R103)
- PAttr_ID (R103)
- Name (M)
- Descrip
- Prefix
- Root_Nm
- Pfx_Mod
- DT_ID (R114)

5. External Entity Data Item

(S_EEDI)

* EEdi_ID
* EE_ID (R11)
- Name
- Descrip
- DT_ID (R15)

bject (O_IOBJ)

)

4. External Entity in Model (S_EEM)

* EEmod_ID
* EE_ID (R9)
- Modl_Typ
- SS_ID (R7)

has data
access
represented
by

R417

shoes accesses
of data from

c

originates from

R416

originates

c

event communcation to

event communication to

represents the
destination OBJ
for

R420
destination OBJ can
be represented by

c

c

ons
by

411

c

tes from

originates
from

R410

originates

c

is accessed by

R419

represents
access of

c is accessed by

R423

represents
access of

c

has data
access
represented
by

R421

accesses data
of

c

origination OBJ can be
represented by R425

represents origination OBJ for

c

c

CONFIDENTIAL

84 Step 8: OOA of OOA
 8.2.4.1 Object and Attribute Descriptions

o 401. Communication Path (CA_COMM)
Communication Path (CPath_ID, SS_ID)

Identifier *: CPath_ID

Communication Path.CPath_ID

Full Name: Communication Path Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Communication Path.SS_ID

Attribute Type: Referential Attribute

Refers To: Subsystem.SS_ID (R5) (See Page 21)

o 402. EE to SM Comm Path (CA_EESMC)
EE to SM Comm Path (CPath_ID, EEmod_ID, EE_ID, SM_ID)

Identifier *: CPath_ID

Identifier *2: EE_ID, SM_ID

EE to SM Comm Path.CPath_ID

Attribute Type: Referential Attribute

Refers To: Communication Path.CPath_ID (R401) (See Page 84)

EE to SM Comm Path.EEmod_ID

Attribute Type: Referential Attribute

Refers To: External Entity in Model.EEmod_ID (R402) (See Page 24)

EE to SM Comm Path.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity in Model.EE_ID (R402) (See Page 24)
CONFIDENTIAL

Method 85
EE to SM Comm Path.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R403) (See Page 100)

o 403. SM to SM Comm Path (CA_SMSMC)
SM to SM Comm Path (CPath_ID, OSM_ID, DSM_ID, OIObj_ID,

DIObj_ID)

Identifier *: CPath_ID

Identifier *2: OSM_ID, DSM_ID

SM to SM Comm Path.CPath_ID

Attribute Type: Referential Attribute

Refers To: Communication Path.CPath_ID (R401) (See Page 84)

SM to SM Comm Path.OSM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R406) (See Page 100)

SM to SM Comm Path.DSM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R407) (See Page 100)

SM to SM Comm Path.OIObj_ID

Attribute Type: Referential Attribute

Refers To: Imported Object.IObj_ID (R424) (See Page 45)

SM to SM Comm Path.DIObj_ID

Attribute Type: Referential Attribute

Refers To: Imported Object.IObj_ID (R414) (See Page 45)

o 404. SM to EE Comm Path (CA_SMEEC)
SM to EE Comm Path (CPath_ID, SM_ID, EE_ID, EEmod_ID)
CONFIDENTIAL

86 Step 8: OOA of OOA
Identifier *: CPath_ID

Identifier *2: SM_ID, EE_ID

SM to EE Comm Path.CPath_ID

Attribute Type: Referential Attribute

Refers To: Communication Path.CPath_ID (R401) (See Page 84)

SM to EE Comm Path.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R410) (See Page 100)

SM to EE Comm Path.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity in Model.EE_ID (R411) (See Page 24)

SM to EE Comm Path.EEmod_ID

Attribute Type: Referential Attribute

Refers To: External Entity in Model.EEmod_ID (R411) (See Page 24)

o 405. EE to SM Event Comm (CA_EESME)
EE to SM Event Comm (CPath_ID, SM_ID, SMevt_ID)

Identifier *: SM_ID, SMevt_ID, CPath_ID

EE to SM Event Comm.CPath_ID

Attribute Type: Referential Attribute

Refers To: EE to SM Comm Path.CPath_ID (R404) (See Page 84)

EE to SM Event Comm.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SM_ID (R405) (See Page 102)

EE to SM Event Comm.SMevt_ID

Attribute Type: Referential Attribute
CONFIDENTIAL

Method 87
Refers To: State Model Event.SMevt_ID (R405) (See Page 102)

o 406.SM to SM Event Comm (CA_SMSME)
SM to SM Event Comm (CPath_ID, SM_ID, SMevt_ID)

Identifier *: SM_ID, SMevt_ID, CPath_ID

SM to SM Event Comm.CPath_ID

Attribute Type: Referential Attribute

Refers To: SM to SM Comm Path.CPath_ID (R408) (See Page 85)

SM to SM Event Comm.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SM_ID (R409) (See Page 102)

SM to SM Event Comm.SMevt_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SMevt_ID (R409) (See Page 102)

o 407. SM to EE Event Comm (CA_SMEEE)
SM to EE Event Comm (CPath_ID, EE_ID, EEevt_ID)

Identifier *: EE_ID, EEevt_ID, CPath_ID

SM to EE Event Comm.CPath_ID

Attribute Type: Referential Attribute

Refers To: SM to EE Comm Path.CPath_ID (R412) (See Page 86)

SM to EE Event Comm.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity Event.EE_ID (R413) (See Page 26)

SM to EE Event Comm.EEevt_ID

Attribute Type: Referential Attribute
CONFIDENTIAL

88 Step 8: OOA of OOA
Refers To: External Entity Event.EEevt_ID (R413) (See Page 25)

o 408. Access Path (CA_ACC)
Access Path (APath_ID, SS_ID, SM_ID, IObj_ID)

Identifier *: APath_ID

Access Path.APath_ID

Full Name: Access Path Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Access Path.SS_ID

Attribute Type: Referential Attribute

Refers To: Subsystem.SS_ID (R6) (See Page 21)

Access Path.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R416) (See Page 101)

Access Path.IObj_ID

Attribute Type: Referential Attribute

Refers To: Imported Object.IObj_ID (R425) (See Page 45)

o 409. SM to OBJ Access Path (CA_SMOA)
SM to OBJ Access Path (APath_ID, Obj_ID, IObj_ID)

Identifier *: APath_ID, Obj_ID

SM to OBJ Access Path.APath_ID

Attribute Type: Referential Attribute

Refers To: Access Path.APath_ID (R415) (See Page 88)
CONFIDENTIAL

Method 89
SM to OBJ Access Path.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R417) (See Page 44)

SM to OBJ Access Path.IObj_ID

Attribute Type: Referential Attribute

Refers To: Imported Object.IObj_ID (R420) (See Page 45)

o 410. SM to EE Access Path (CA_SMEEA)
SM to EE Access Path (APath_ID, EE_ID, EEmod_ID)

Identifier *: APath_ID, EE_ID

SM to EE Access Path.APath_ID

Attribute Type: Referential Attribute

Refers To: Access Path.APath_ID (R415) (See Page 88)

SM to EE Access Path.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity in Model.EE_ID (R421) (See Page 24)

SM to EE Access Path.EEmod_ID

Attribute Type: Referential Attribute

Refers To: External Entity in Model.EEmod_ID (R421) (See Page 24)

o 411. SM to OBJ Attribute Access (CA_SMOAA)
SM to OBJ Attribute Access (APath_ID, Attr_ID, Obj_ID)

Identifier *: Obj_ID, Attr_ID, APath_ID

ASM to OBJ Attribute Access.APath_ID

Attribute Type: Referential Attribute

Refers To: SM to OBJ Access Path.APath_ID (R418) (See Page 88)
CONFIDENTIAL

90 Step 8: OOA of OOA
SM to OBJ Attribute Access.Attr_ID

Attribute Type: Referential Attribute

Refers To: Attribute.Attr_ID (R419) (See Page 46)

SM to OBJ Attribute Access.Obj_ID

Attribute Type: Referential Attribute

Refers To: SM to OBJ Access Path.Obj_ID (R418) (See Page 89)

Refers To: Attribute.Obj_ID (R419) (See Page 46)

Refers To: SM to OBJ Access Path.Obj_ID (R418) (See Page 89)

o 412. SM to EE Data Item Access (CA_SMEED)
SM to EE Data Item Access (APath_ID, EEdi_ID, EE_ID)

Identifier *: EE_ID, EEdi_ID, APath_ID

SM to EE Data Item Access.APath_ID

Attribute Type: Referential Attribute

Refers To: SM to EE Access Path.APath_ID (R422) (See Page 89)

SM to EE Data Item Access.EEdi_ID

Attribute Type: Referential Attribute

Refers To: External Entity Data Item.EEdi_ID (R423) (See Page 25)

SM to EE Data Item Access.EE_ID

Attribute Type: Referential Attribute

Refers To: External Entity Data Item.EE_ID (R423) (See Page 25)

Refers To: SM to EE Access Path.EE_ID (R422) (See Page 89)
CONFIDENTIAL

Method 91
 8.2.4.2 Relationship Descriptions

Ø R401
Relationship Type: Subtype/Supertype

Subtypes: EE to SM Comm Path, SM to SM Comm Path, SM to EE Comm
Path

Formalized By: Communication Path.CPath_ID

Ø R402
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity in Model originates EE to SM Comm Path

EE to SM Comm Path originates from External Entity in Model

Formalized By: External Entity in Model.EE_ID, External Entity in
Model.EEmod_ID

Ø R403
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model has received event communication represented by EE to SM
Comm Path

EE to SM Comm Path shows event communication to State Model

Formalized By: State Model.SM_ID

Ø R404
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

EE to SM Comm Path carries EE to SM Event Comm

EE to SM Event Comm is carried by EE to SM Comm Path

Formalized By: EE to SM Comm Path.CPath_ID
CONFIDENTIAL

92 Step 8: OOA of OOA
Ø R405
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model Event is carried to other SMs via EE to SM Event Comm

EE to SM Event Comm represents communication of State Model Event

Formalized By: State Model Event.SM_ID, State Model Event.SMevt_ID

Ø R406
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model originates SM to SM Comm Path

SM to SM Comm Path originates from State Model

Formalized By: State Model.SM_ID

Ø R407
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model has received event communication represented by SM to SM
Comm Path

SM to SM Comm Path shows event communication to State Model

Formalized By: State Model.SM_ID

Ø R408
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

SM to SM Comm Path carries SM to SM Event Comm

SM to SM Event Comm is carried by SM to SM Comm Path

Formalized By: SM to SM Comm Path.CPath_ID

Ø R409
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1
CONFIDENTIAL

Method 93
State Model Event is carried to other SMs via SM to SM Event Comm

SM to SM Event Comm represents communication of State Model Event

Formalized By: State Model Event.SM_ID, State Model Event.SMevt_ID

Ø R410
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model originates SM to EE Comm Path

SM to EE Comm Path originates from State Model

Formalized By: State Model.SM_ID

Ø R411
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity in Model has receive event communications represented by
SM to EE Comm Path

SM to EE Comm Path shows event communication to External Entity in
Model

Formalized By: External Entity in Model.EE_ID, External Entity in
Model.EEmod_ID

Ø R412
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

SM to EE Comm Path carries SM to EE Event Comm

SM to EE Event Comm is carried by SM to EE Comm Path

Formalized By: SM to EE Comm Path.CPath_ID

Ø R413
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity Event is carried to EE via SM to EE Event Comm
CONFIDENTIAL

94 Step 8: OOA of OOA
SM to EE Event Comm represents communications of External Entity Event

Formalized By: External Entity Event.EE_ID, External Entity
Event.EEevt_ID

Ø R414
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1c

Imported Object represents the destination SM for SM to SM Comm Path

SM to SM Comm Path destination SM can be represented by Imported
Object

Formalized By: Imported Object.IObj_ID

Ø R415
Relationship Type: Subtype/Supertype

Subtypes: SM to OBJ Access Path, SM to EE Access Path

Formalized By: Access Path.APath_ID

Ø R416
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model originates Access Path

Access Path originates from State Model

Formalized By: State Model.SM_ID

Ø R417
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Object has data access represented by SM to OBJ Access Path

SM to OBJ Access Path shoes accesses of data from Object

Formalized By: Object.Obj_ID
CONFIDENTIAL

Method 95
Ø R418
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

SM to OBJ Access Path carries SM to OBJ Attribute Access

SM to OBJ Attribute Access is carried by SM to OBJ Access Path

Formalized By: SM to OBJ Access Path.APath_ID, SM to OBJ Access
Path.Obj_ID

Ø R419
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Attribute is accessed by SM to OBJ Attribute Access

SM to OBJ Attribute Access represents access of Attribute

Formalized By: Attribute.Attr_ID, Attribute.Obj_ID

Description: None

Ø R420
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1c

Imported Object represents the destination OBJ for SM to OBJ Access Path

SM to OBJ Access Path destination OBJ can be represented by Imported
Object

Formalized By: Imported Object.IObj_ID

Ø R421
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity in Model has data access represented by SM to EE Access
Path

SM to EE Access Path accesses data of External Entity in Model

Formalized By: External Entity in Model.EE_ID, External Entity in
Model.EEmod_ID
CONFIDENTIAL

96 Step 8: OOA of OOA
Ø R422
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

SM to EE Access Path carries SM to EE Data Item Access

SM to EE Data Item Access is carried by SM to EE Access Path

Formalized By: SM to EE Access Path.APath_ID, SM to EE Access
Path.EE_ID

Ø R423
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

External Entity Data Item is accessed by SM to EE Data Item Access

SM to EE Data Item Access represents access of External Entity Data Item

Formalized By: External Entity Data Item.EE_ID, External Entity Data
Item.EEdi_ID

Ø R424
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1c

Imported Object represents the origination SM for SM to SM
Communication Path

SM to SM Communication Path origination SM can be represented by
Imported Object

Formalized By: Imported Object.IObj_ID

Ø R425
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1c

Imported Object represents the origination OBJ for Access Path

Access Path origination OBJ can be represented by Imported Object

Formalized By: Imported Object.IObj_ID
CONFIDENTIAL

Method 97
 8.2.5 Subsystem ‘State Model’
Objects that have interesting behavior are given lifecycles. These lifecycles are
described using State Models. A State Model consists of states, events,
transactions and state actions. The State Model exists for each instance of the
Object to which it is assigned. A State Model can also be an Assigner State
Model of which only one can exists for all Object instances. The purpose of the
Assigner State Model is to act as a single point of control through which
competing requests are serialized.
CONFIDENTIAL

98 Step 8: OOA of OOA

501. State Model (SM_SM)

* SM_ID
- Descrip
- Config_ID

508. Transition (SM_TXN)

* *2 Trans_ID
* *2 SM_ID (R505) (R506)
- SMstt_ID (R506)
*2 SMspd_ID (R506)

511. Moore State Model (SM_MOORE)

* SM_ID (R510)

512. Mealy State Model (SM_MEALY)

* SM_ID (R510)

513. Moore Action Home (SM_MOAH)

*2 Act_ID (R513)
* *2 SM_ID (R511) (R511) (R513)
* SMstt_ID (R511)

514. Mealy Action Home (SM_MEAH)

*2 Act_ID (R513)
* *2 SM_ID (R512) (R512) (R513)
* Trans_ID (R512)

515. Action Home (SM_AH)

* Act_ID (R514)
* SM_ID (R514)

516. Action (SM_ACT)

* Act_ID
* SM_ID (R515)
- Suc_Pars
- Descrip

520. Instance State Model

(SM_ISM)

* SM_ID (R517)
* Obj_ID (R518)

521. Assigner State Model

(SM_ASM)

* SM_ID (R517)
* Obj_ID (R519) is carried on

events into

R516

R502

R501

is
deco
d into

is a

R507

is destine to
R506

is
destinatio
n of

c

R505

contains

c

is aR510

R511

c

R512
c

is a

R513

houses

R514

resides
in

R515

contains
c

is aR517

is assigned to

R523

101. Object (O_OBJ)

* Obj_ID
- Name
- Numb
- Key_Lett
- Descrip
- SS_ID (R2)

9. Data Type (S_DT)

* *2 DT_ID
*2 Dom_ID (R14)
- Name
- Descrip

R518

c

R519

c

CONFIDENTIAL

Method 99

519. Supplemental Data Items (SM_SDI)

* SMedi_ID (R522)
* SMspd_ID (R522)
* SM_ID (R522) (R522)

518. Event Supplemental Data (SM_SUPDT)

* SMspd_ID
* SM_ID (R523)

517. State Model Event Data Item (SM_EVTDI)

* SMedi_ID
* SM_ID (R516)
- Name
- Descrip
- DT_ID (R524)

503. State Model Event (SM_EVT)

* *2 SMevt_ID
* *2 SM_ID (R502) (R520)
*2 SMspd_ID (R520)
- Numb
- Mning
- Are_KL_C
- Cust_KL
- Drv_Lbl (M)
- Descrip

502. State Model State (SM_STATE)

* *2 SMstt_ID
* *2 SM_ID (R501) (R521)
*2 SMspd_ID (R521)
- Name
- Numb
- Final

504. State Event Matrix Entry (SM_SEME)

* SMstt_ID (R503)
* SMevt_ID (R503)
* SM_ID (R503) (R503)
* SMspd_ID (R503) (R503)

506. Event Ignored (SM_EIGN)

* SMstt_ID (R504)
* SMevt_ID (R504)
* SM_ID (R504)
* SMspd_ID (R504)
- Descrip

505. New State Transition (SM_NSTXN)

*2 Trans_ID (R507)
* *2 SM_ID (R504) (R507)
* SMstt_ID (R504)
* SMevt_ID (R504)
* *2 SMspd_ID (R504) (R507)

507. Cant Happen (SM_CH)

* SMstt_ID (R504)
* SMevt_ID (R504)
* SM_ID (R504)
* SMspd_ID (R504)
- Descrip

510. Creation Transition (SM_CRTXN)

* *2 Trans_ID (R507)
* *2 SM_ID (R509) (R507)
- SMevt_ID (R509)
*2 SMspd_ID (R509) (R507)

509. No Event Transition (SM_NETXN)

*2 Trans_ID (R507)
*2 SM_ID (R508) (R507)
- SMstt_ID (R508)
*2 SMspd_ID (R507)

508. Transition (SM_TXN)

* *2 Trans_ID
* *2 SM_ID (R505) (R506)
- SMstt_ID (R506)
*2 SMspd_ID (R506)

makes up

R522

is made up of

c

c

carries

R520

defines
signature of

receives
asynchronous
data via

R521

is delivered by
received event to

c

can asynchronously
communicate via

c

can be
communicat
ed to via c

R501

is
decompose
d into

c

is received by
R503

receives

c

c

is a
R504

is a

R507

originates
from

R508

is origination
ofc

is assigned to

R509

has
assigne
d to it

c

cis destine to
R506

is
destinatio
n of

c

R505

contains

c

ssigned to

R523

contains
c

9. Data Type (S_DT)

* *2 DT_ID
*2 Dom_ID (R14)
- Name
- Descrip

is defined by

R524

defines the
type of

c

CONFIDENTIAL

100 Step 8: OOA of OOA
 8.2.5.1 Object and Attribute Descriptions

o 501. State Model (SM_SM)
State Model (SM_ID, Descrip, Config_ID)

Identifier *: SM_ID

State Model.SM_ID

Full Name: State Model Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

State Model.Descrip

Full Name: State Model Description

Attribute Type: Base Attribute

Data Domain: string

State Model.Config_ID

Full Name: Configuration Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Description: The Configuration ID of the version management configuration
which the state model is a part of (See Page 57 of BridgePoint Tool
Guide). This ID can be used to access the V_CONFIG record
corresponding to the State Model/Action Configuration.

o 502. State Model State (SM_STATE)
State Model State (SMstt_ID, SM_ID, SMspd_ID, Name, Numb, Final)

Identifier *: SM_ID, SMstt_ID

Identifier *2: SMspd_ID, SM_ID, SMstt_ID

State Model State.SMstt_ID

Full Name: State Model State Identifier

Attribute Type: Base Attribute
CONFIDENTIAL

Method 101
Data Domain: unique_id

State Model State.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R501) (See Page 100)

State Model State.SMspd_ID

Attribute Type: Referential Attribute

Refers To: Event Supplemental Data.SMspd_ID (R521) (See Page 112)

State Model State.Name

Full Name: State Name

Attribute Type: Base Attribute

Data Domain: string

State Model State.Numb

Full Name: State Number

Attribute Type: Base Attribute

Data Domain: integer

State Model State.Final

Full Name: Is Deletion Final State Flag

Attribute Type: Base Attribute

Data Domain: integer

0 = Not Deletion Final State

1 = Deletion Final State

o 503. State Model Event (SM_EVT)
State Model Event (SMevt_ID, SM_ID, SMspd_ID, Numb, Mning,

Are_KL_C, Cust_KL, Drv_Lbl, Descrip)

Identifier *: SM_ID, SMevt_ID

Identifier *2: SMspd_ID, SM_ID, SMevt_ID
CONFIDENTIAL

102 Step 8: OOA of OOA
State Model Event.SMevt_ID

Full Name: State Model Event Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

State Model Event.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R502) (See Page 100)

State Model Event.SMspd_ID

Attribute Type: Referential Attribute

Refers To: Event Supplemental Data.SMspd_ID (R520) (See Page 112)

State Model Event.Numb

Full Name: Event Number

Attribute Type: Base Attribute

Data Domain: integer

State Model Event.Mning

Full Name: Event Meaning

Attribute Type: Base Attribute

Data Domain: string

State Model Event.Are_KL_C

Full Name: Are Keyletters Custom Flag

Attribute Type: Base Attribute

Data Domain: integer

Description: This is a flag that indicates whether custom label keyletters are
used for the External Entity Event.
Value 0 indicates custom label keyletters are used.
Value 1 indicates External Entity keyletters are used.

State Model Event.Cust_KL

Full Name: Custom Event Keyletters
CONFIDENTIAL

Method 103
Attribute Type: Base Attribute

Data Domain: string

Description: Holds the event label - derived by concatenating the keyletters
and the event number.

If the Are_KL_C attribute is 0, then the value of the Object.Keyletter
attribute is concatenated with the State Model Event .Numb attribute.

If the Are_KL_C attribute is 1, then the value of the State Model
Event.Cust_KL attribute is concatenated with the State Model
Event.Numb attribute.

State Model Event.Drv_Lbl

Full Name: Derived Label

Attribute Type: Base Attribute

Data Domain: string

State Model Event.Descrip

Full Name: Event Description

Attribute Type: Base Attribute

Data Domain: string

o 504. State Event Matrix Entry (SM_SEME)
State Event Matrix Entry (SMstt_ID, SMevt_ID, SM_ID, SMspd_ID)

Identifier *: SMevt_ID, SM_ID, SMspd_ID, SMstt_ID

State Event Matrix Entry.SMstt_ID

Attribute Type: Referential Attribute

Refers To: State Model State.SMstt_ID (R503) (See Page 100)

State Event Matrix Entry.SMevt_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SMevt_ID (R503) (See Page 103)

State Event Matrix Entry.SM_ID

Attribute Type: Referential Attribute
CONFIDENTIAL

104 Step 8: OOA of OOA
Refers To: State Model Event.SM_ID (R503) (See Page 101)

State Event Matrix Entry.SMspd_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SMspd_ID (R503) (See Page 102)

o 505. New State Transition (SM_NSTXN)
New State Transition (Trans_ID, SM_ID, SMstt_ID, SMevt_ID, SMspd_ID)

Identifier *: SM_ID, SMevt_ID, SMstt_ID, SMspd_ID

Identifier *2: Trans_ID, SM_ID, SMspd_ID

New State Transition.Trans_ID

Attribute Type: Referential Attribute

Refers To: Transition.Trans_ID (R507) (See Page 106)

New State Transition.SM_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SM_ID (R504) (See Page 103)

New State Transition.SMstt_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMstt_ID (R504) (See Page 103)

New State Transition.SMevt_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMevt_ID (R504) (See Page 103)

New State Transition.SMspd_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMspd_ID (R504) (See Page 104)
CONFIDENTIAL

Method 105
o 506. Event Ignored (SM_EIGN)
Event Ignored (SMstt_ID, SMevt_ID, SM_ID, SMspd_ID, Descrip)

Identifier *: SMevt_ID, SM_ID, SMstt_ID, SMspd_ID

Event Ignored.SMstt_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMstt_ID (R504) (See Page 103)

Event Ignored.SMevt_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMevt_ID (R504) (See Page 103)

Event Ignored.SM_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SM_ID (R504) (See Page 103)

Event Ignored.SMspd_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMspd_ID (R504) (See Page 104)

Event Ignored.Descrip

Full Name: Event Ignored Description

Attribute Type: Base Attribute

Data Domain: string

o 507. Cant Happen (SM_CH)
Cant Happen (SMstt_ID, SMevt_ID, SM_ID, SMspd_ID, Descrip)

Identifier *: SMevt_ID, SM_ID, SMstt_ID, SMspd_ID

Cant Happen.SMstt_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMstt_ID (R504) (See Page 103)
CONFIDENTIAL

106 Step 8: OOA of OOA
Cant Happen.SMevt_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMevt_ID (R504) (See Page 103)

Cant Happen.SM_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SM_ID (R504) (See Page 103)

Cant Happen.SMspd_ID

Attribute Type: Referential Attribute

Refers To: State Event Matrix Entry.SMspd_ID (R504) (See Page 104)

Cant Happen.Descrip

Full Name: Cant Happen Description

Attribute Type: Base Attribute

Data Domain: string

o 508. Transition (SM_TXN)
Transition (Trans_ID, SM_ID, SMstt_ID, SMspd_ID)

Identifier *: Trans_ID, SM_ID

Identifier *2: Trans_ID, SM_ID, SMspd_ID

Transition.Trans_ID

Full Name: Transition Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Transition.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R505) (See Page 100)

Transition.SMstt_ID

Attribute Type: Referential Attribute
CONFIDENTIAL

Method 107
Refers To: State Model State.SMstt_ID (R506) (See Page 100)

Transition.SMspd_ID

Attribute Type: Referential Attribute

Refers To: State Model State.SMspd_ID (R506) (See Page 101)

o 509. No Event Transition (SM_NETXN)
No Event Transition (Trans_ID, SM_ID, SMstt_ID, SMspd_ID)

Identifier *2: Trans_ID, SM_ID, SMspd_ID

No Event Transition.Trans_ID

Attribute Type: Referential Attribute

Refers To: Transition.Trans_ID (R507) (See Page 106)

No Event Transition.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model State.SM_ID (R508) (See Page 101)

No Event Transition.SMstt_ID

Attribute Type: Referential Attribute

Refers To: State Model State.SMstt_ID (R508) (See Page 100)

No Event Transition.SMspd_ID

Attribute Type: Referential Attribute

Refers To: Transition.SMspd_ID (R507) (See Page 107)

o 510. Creation Transition (SM_CRTXN)
Creation Transition (Trans_ID, SM_ID, SMevt_ID, SMspd_ID)

Identifier *: SM_ID, Trans_ID

Identifier *2: Trans_ID, SM_ID, SMspd_ID
CONFIDENTIAL

108 Step 8: OOA of OOA
Creation Transition.Trans_ID

Attribute Type: Referential Attribute

Refers To: Transition.Trans_ID (R507) (See Page 106)

Creation Transition.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SM_ID (R509) (See Page 102)

Creation Transition.SMevt_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SMevt_ID (R509) (See Page 102)

Creation Transition.SMspd_ID

Attribute Type: Referential Attribute

Refers To: State Model Event.SMspd_ID (R509) (See Page 102)

o 511. Moore State Model (SM_MOORE)
Moore State Model (SM_ID)

Identifier *: SM_ID

Moore State Model.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R510) (See Page 100)

o 512. Mealy State Model (SM_MEALY)
Mealy State Model (SM_ID)

Identifier *: SM_ID

Mealy State Model.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R510) (See Page 100)
CONFIDENTIAL

Method 109
o 513.Moore Action Home (SM_MOAH)
Moore Action Home (Act_ID, SM_ID, SMstt_ID)

Identifier *: SM_ID, SMstt_ID

Identifier *2: SM_ID, Act_ID

Moore Action Home.Act_ID

Attribute Type: Referential Attribute

Refers To: Action Home.Act_ID (R513) (See Page 110)

Moore Action Home.SM_ID

Attribute Type: Referential Attribute

Refers To: Moore State Model.SM_ID (R511) (See Page 108)

Moore Action Home.SMstt_ID

Attribute Type: Referential Attribute

Refers To: State Model State.SMstt_ID (R511) (See Page 100)

o 514. Mealy Action Home (SM_MEAH)
Mealy Action Home (Act_ID, SM_ID, Trans_ID)

Identifier *: SM_ID, Trans_ID

Identifier *2: SM_ID, Act_ID

Mealy Action Home.Act_ID

Attribute Type: Referential Attribute

Refers To: Action Home.Act_ID (R513) (See Page 110)

Mealy Action Home.SM_ID

Attribute Type: Referential Attribute

Refers To: Mealy State Model.SM_ID (R512) (See Page 108)

Mealy Action Home.Trans_ID

Attribute Type: Referential Attribute

Refers To: Transition.Trans_ID (R512) (See Page 106)
CONFIDENTIAL

110 Step 8: OOA of OOA
o 515.Action Home (SM_AH)
Action Home (Act_ID, SM_ID)

Identifier *: SM_ID, Act_ID

Action Home.Act_ID

Attribute Type: Referential Attribute

Refers To: Action.Act_ID (R514) (See Page 110)

Action Home.SM_ID

Attribute Type: Referential Attribute

Refers To: Action.SM_ID (R514) (See Page 110)

o 516. Action (SM_ACT)
Action (Act_ID, SM_ID, Suc_Pars, Descrip)

Identifier *: SM_ID, Act_ID

Action.Act_ID

Full Name: Action Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Action.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R515) (See Page 100)

Action.Suc_Pars

Full Name: Action Successfully Parsed

Attribute Type: Base Attribute

Data Domain: integer

0 = NOT Successfully Parsed

1 = Successfully Parsed
CONFIDENTIAL

Method 111
Action.Descrip

Full Name: Action Description

Attribute Type: Base Attribute

Data Domain: string

o 517. State Model Event Data Item (SM_EVTDI)
State Model Event Data Item (SMedi_ID, SM_ID, Name, Descrip, DT_ID)

Identifier *: SMedi_ID, SM_ID

State Model Event Data Item.SMedi_ID

Full Name: State Model Event Data Item Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

State Model Event Data Item.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R516) (See Page 100)

State Model Event Data Item.Name

Full Name: Event Data Item Name

Attribute Type: Base Attribute

Data Domain: string

State Model Event Data Item.Descrip

Full Name: Description

Attribute Type: Base Attribute

Data Domain: string

State Model Event Data Item.DT_ID

Attribute Type: Referential Attribute

Refers To: Data Type.DT_ID (R524) (See Page 29)
CONFIDENTIAL

112 Step 8: OOA of OOA
o 518. Event Supplemental Data (SM_SUPDT)
Event Supplemental Data (SMspd_ID, SM_ID)

Identifier *: SMspd_ID, SM_ID

Event Supplemental Data.SMspd_ID

Full Name: Event Supplemental Data Identifier

Attribute Type: Base Attribute

Data Domain: unique_id

Event Supplemental Data.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R523) (See Page 100)

o 519. Supplemental Data Items (SM_SDI)
Supplemental Data Items (SMedi_ID, SMspd_ID, SM_ID)

Identifier *: SMedi_ID, SM_ID, SMspd_ID

Supplemental Data Items.SMedi_ID

Attribute Type: Referential Attribute

Refers To: State Model Event Data Item.SMedi_ID (R522) (See Page 111)

Supplemental Data Items.SMspd_ID

Attribute Type: Referential Attribute

Refers To: Event Supplemental Data.SMspd_ID (R522) (See Page 112)

Supplemental Data Items.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model Event Data Item.SM_ID (R522) (See Page 111)

o 520. Instance State Model (SM_ISM)
Instance State Model (SM_ID, Obj_ID)

Identifier *: SM_ID, Obj_ID
CONFIDENTIAL

Method 113
Instance State Model.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R517) (See Page 100)

Instance State Model.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R518) (See Page 44)

o 521. Assigner State Model (SM_ASM)
Assigner State Model (SM_ID, Obj_ID)

Identifier *: SM_ID, Obj_ID

Assigner State Model.SM_ID

Attribute Type: Referential Attribute

Refers To: State Model.SM_ID (R517) (See Page 100)

Assigner State Model.Obj_ID

Attribute Type: Referential Attribute

Refers To: Object.Obj_ID (R519) (See Page 44)
CONFIDENTIAL

114 Step 8: OOA of OOA
 8.2.5.2 Relationship Descriptions

Ø R501
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model is decomposed into State Model State

State Model State ... State Model

Formalized By: State Model.SM_ID

Ø R502
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model can be communicated to via State Model Event

State Model Event ... State Model

Formalized By: State Model.SM_ID

Ø R503
Relationship Type: Associative

Multiplicity/Conditionality: 1-(Mc:Mc)

State Model Event is received by State Model State

State Model State receives State Model Event

Formalized By: State Model State.SMspd_ID, State Model State.SM_ID,
State Model State.SMstt_ID, State Model Event.SMspd_ID, State
Model Event.SM_ID, State Model Event.SMevt_ID

Ø R504
Relationship Type: Subtype/Supertype

Subtypes: Event Ignored, Cant Happen, New State Transition

Formalized By: State Event Matrix Entry.SMevt_ID, State Event Matrix
Entry.SM_ID, State Event Matrix Entry.SMspd_ID, State Event Matrix
Entry.SMstt_ID
CONFIDENTIAL

Method 115
Ø R505
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model contains Transition

Transition ... State Model

Formalized By: State Model.SM_ID

Ø R506
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model State is destination of Transition

Transition is destine to State Model State

Formalized By: State Model State.SMspd_ID, State Model State.SM_ID,
State Model State.SMstt_ID

Ø R507
Relationship Type: Subtype/Supertype

Subtypes: No Event Transition, Creation Transition, New State Transition

Formalized By: Transition.Trans_ID, Transition.SM_ID,
Transition.SMspd_ID

Ø R508
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model State is origination of No Event Transition

No Event Transition originates from State Model State

Formalized By: State Model State.SM_ID, State Model State.SMstt_ID

Ø R509
Relationship Type: Simple

Multiplicity/Conditionality: 1c:1c

State Model Event is assigned to Creation Transition
CONFIDENTIAL

116 Step 8: OOA of OOA
Creation Transition has assigned to it State Model Event

Formalized By: State Model Event.SMspd_ID, State Model Event.SM_ID,
State Model Event.SMevt_ID

Ø R510
Relationship Type: Subtype/Supertype

Subtypes: Mealy State Model, Moore State Model

Formalized By: State Model.SM_ID

Ø R511
Relationship Type: Associative

Multiplicity/Conditionality: 1-(1c:Mc)

State Model State ... Moore State Model

Moore State Model ... State Model State

Formalized By: Moore State Model.SM_ID, State Model State.SM_ID, State
Model State.SMstt_ID

Ø R512
Relationship Type: Associative

Multiplicity/Conditionality: 1-(1c:Mc)

Transition ... Mealy State Model

Mealy State Model ... Transition

Formalized By: Mealy State Model.SM_ID, Transition.Trans_ID,
Transition.SM_ID

Ø R513
Relationship Type: Subtype/Supertype

Subtypes: Moore Action Home, Mealy Action Home

Formalized By: Action Home.SM_ID, Action Home.Act_ID
CONFIDENTIAL

Method 117
Ø R514
Relationship Type: Simple

Multiplicity/Conditionality: 1:1

Action resides in Action Home

Action Home houses Action

Formalized By: Action.SM_ID, Action.Act_ID

Ø R515
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model contains Action

Action ... State Model

Formalized By: State Model.SM_ID

Ø R516
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model can asynchronously communicate via State Model Event Data
Item

State Model Event Data Item is carried on events into State Model

Formalized By: State Model.SM_ID

Ø R517
Relationship Type: Subtype/Supertype

Subtypes: Instance State Model, Assigner State Model

Formalized By: State Model.SM_ID

Ø R518
Relationship Type: Simple

Multiplicity/Conditionality: 1c:1

Object ... Instance State Model

Instance State Model ... Object
CONFIDENTIAL

118 Step 8: OOA of OOA
Formalized By: Object.Obj_ID

Ø R519
Relationship Type: Simple

Multiplicity/Conditionality: 1c:1

Object ... Assigner State Model

Assigner State Model ... Object

Formalized By: Object.Obj_ID

Ø R520
Relationship Type: Simple

Multiplicity/Conditionality: M:1

Event Supplemental Data defines signature of State Model Event

State Model Event carries Event Supplemental Data

Formalized By: Event Supplemental Data.SMspd_ID, Event Supplemental
Data.SM_ID

Ø R521
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1c

Event Supplemental Data is delivered by received event to State Model State

State Model State receives asynchronous data via Event Supplemental Data

Formalized By: Event Supplemental Data.SMspd_ID, Event Supplemental
Data.SM_ID

Ø R522
Relationship Type: Associative

Multiplicity/Conditionality: 1-(Mc:Mc)

State Model Event Data Item makes up Event Supplemental Data

Event Supplemental Data is made up of State Model Event Data Item
CONFIDENTIAL

Method 119
Formalized By: Event Supplemental Data.SMspd_ID, Event Supplemental
Data.SM_ID, State Model Event Data Item.SMedi_ID, State Model
Event Data Item.SM_ID

Ø R523
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

State Model contains Event Supplemental Data

Event Supplemental Data is assigned to State Model

Formalized By: State Model.SM_ID

Ø R524
Relationship Type: Simple

Multiplicity/Conditionality: Mc:1

Data Type defines the type of State Model Event Data Item

State Model Event Data Item is defined by Data Type

Formalized By: Data Type.DT_ID
CONFIDENTIAL

120 Step 8: OOA of OOA
CONFIDENTIAL

TASK

 SW Arch Implementation

122 TASK: SW Arch Implementation

STEP 9

Develop Structural Archetypes

124 Step 9: Develop Structural Archetypes

Method 125
 9.1 Method
An Archetype File is used as input into the Archetype Interpreter (e.g.,
BridgePoint Gen) - it acts as a specification of the rules by which to
automatically create one or more text files. The Archetype Language controls

how the file is generated. The Archetype Language is a mix of:

• literal text,

• control statements,

• and substitution variables.

The literal text is passed straight through to the output files; the control
statements are used to select and iterate over data in the Generation Database;
and the substitution variables are used to access from the Generation Database
and format the data for the output files.

Literal Text, Control Statements, and Substitution Variables are explained in the
following sections.

Archetype File

Archetype Interpreter

Generated Output File

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

.SELECT obj_inst

.POPULATE obj_inst

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class ${obj_inst.name}

{

.ITERATE attr_inst

int get_${attr_inst.name} ();

void set_${attr_inst.name} ();

.END_ITERATE

};

Generation DB

Figure 9.1.0.1. File Generation

126 Step 9: Develop Structural Archetypes
 9.1.1 General Language Attributes
1. Execution is sequential.

2. All transient variables are implicitly declared upon the first assignment - any
subsequent assignments simply re-assign the same variable. A re-assignment
of a variable to a different type is not allowed.

3. A stack execution model is assumed - variables are pushed on the stack as
they are implicitly declared and are popped off the stack as they fall out of
scope. Any variable implicitly declared inside of the If - Elif -
Else - End if or For - End for falls out of scope when the
End if / Elif / Else / End for is encountered in execution.

4. White space is treated as a token delimiter.

5. Statements are intended to be readable as a sentence so keywords are used in
groups to provide verb phrases or prepositional phrases when combined with
variables and OOA element references.

6. Key words may be all lower-case, all upper-case, or first character uppercase
and all other characters lower-case.

7. Variables must adhere to the constrained names:

• Names can be made up any alpha (a-z, A-Z) or numeric (0-9) characters
or underscore (_) character.

• Names cannot begin with a numeric (0-9) character.

• Names cannot conflict with keywords from the Archetype Language.

8. Objects in the OOA of OOA are specified by using the object keyletters.

 9.1.1.1 Syntax Notation
In the syntax notation used in this manual:

• Key words and characters (operator symbols...) are in courier bold
type

• OOA element references are indicated by courier italic type

• Variables are indicated by Palatino italic type

Method 127

e

e
tput

‘
esult
 9.1.2 Literal Text
Literal text is passed straight through from the Archetype File to the generated
files.

Any line in the Archetype File which is not a Control Statement is a Literal Text
Line. Any line beginning with a ‘.’ character as the first non-white space
character is a Control Statement Line except those lines which begin with th
’..’ character sequence.

A Literal Text Line with the ‘..’ character sequence as the first non-white space
characters will result in the ‘.’ character in the generated output line. The ‘.’
character anywhere else in the Literal Text Line will result in a ‘.’ character in
the generated output line (no special treatment).

Literal Text Lines can contain Substitution Variables (see “Substitution
Variables” on page 151). Substitution Variables are denoted with the
‘${variable}’ character sequence. This means that the ‘$’ character is a special
character which denotes the beginning of a Substitution Variable. The ‘$$’
character sequence anywhere in a literal text line will result in one ‘$’ character
in the generated output line.

Newline characters at the end of a Literal Text Line are passed through to th
generated output. If you do not want a newline at the end of a generated ou
line (presumably due to control statement constraints), then place a ‘\’ character
as the last character of the Literal Text Line. The ‘\\’ character sequence as the
last two characters of the Literal Text Line will result in one ‘\’ character and
one newline character as the last characters of a generated output line. The \\\’
character sequence as the last three characters of the Literal Text Line will r
in one ‘\’ character as the last character of a generated output line with no
newline character.

TABLE 9.1 Summary of Special Characters in Literal Text Lines

Character Position To Generate Character at Position Use

. First Non-White Space ..

$ Any $$

\ Last \\

128 Step 9: Develop Structural Archetypes
 9.1.3 Data Access Control Statements
The Data Access Control Statements can be any of the following:

• Instance Selection - selecting object instances from the Generation Database.

• Instance Set Iteration

• Object Attribute Access - the reading or writing of Object Attributes.

 9.1.3.1 Instance Selection
Instance Selection makes direct use of chains of related object instances in the
OOA of OOA Object Information Model.

The Control Language statement which supports Instance Selection is the
.Select statement:

.Select one <inst_ref_var> related by <inst_chain>

[where (<condition>)]

.Select any <inst_ref_var> related by <inst_chain>

[where (<condition>)]

.Select many <inst_ref_set_var> related by <inst_chain>

[where (<condition>)]

.Select any <inst_ref_var> from instances of

<obj_keyletters> [where (<condition>)]

.Select many <inst_ref_set_var> from instances of

<obj_keyletters> [where (<condition>)]

where:

<inst_ref_var> ::= reference to 0 or 1 object instances

<inst_ref_set_var> ::= reference to 0, 1, or more object instances

<inst_chain> ::= list of object, relationship, object... which form
an unbroken path through a series of related
object instances

<obj_keyletters> ::= keyletters of an object

<condition> ::= expression with boolean result (see
“Expressions” on page 145)

Method 129

e
Here are some examples:

To select all instances of objects from the OOA:

.Select many obj_set from instances of O_OBJ

To select all attribute instances related to an object instance obj_inst:

.Select many attr_set related by obj_inst->O_ATTR[R102]

To select all relationships which an object instances is involved in:

.Select many rel_set related by obj_inst->R_OIR[R201]-
>R_REL[R201]

Note that the navigation through the associative relationship R201 was in 2 steps
- first to the associative object and then to the other side of the associative
relationship.

The resulting <inst_ref_var> /<inst_ref_set_var> is a transient variable which
follows the implicit declaration rule. When the resulting <inst_ref_var> /
<inst_ref_set_var> is being implicitly declared (used for the first time), the
referred to object of the transient variable is set according to the result of the
.Select. When the resulting <inst_ref_var> /<inst_ref_set_var> is being
reassigned, the referred to object of the new selection must match that of the
transient variable.

 9.1.3.2 Instance Chains

The related by form of the .Select statement uses an instance chain to
specify a path through the related instances. An instance chain is simply a chain
of object instances which are related through the specified relationships - the
eventual result is 0, 1, or more instances of the last object of the chain. The
syntax of the instance chain places the focus on the objects of the chain
(specified by the object keyletters) because the instances of the chain are object
instances. The [] syntax is intended to indicate access into a table of that
object’s instances . The contents of the [] is a specification of which instances
are being accessed - since the instances are accessed via a relationship, th
contents of the [] is the relationship traversal specification.

The relationship traversal specification can be specified as:

130 Step 9: Develop Structural Archetypes

in

eas
e,
R<number>

or

R<number>.<direction>

where:

R<number> ::= reference to relationship

<direction> ::= specification of the direction of the traversal -
IR for ID side to Referential side and RI for
Referential side to ID side.

It is suggested that you use the simplest expression of the relationship traversal
direction which does not lead to ambiguity.

The <direction> is needed when traversing reflexive relationships, i.e.,
relationship where objects are related to themselves, since reflexive relationships
can be traversed in each direction. Examples of reflexive relationships in the
OOA of OOA are R103 (to specify order of attributes) and R112 (to specify order
of R#’s). For example:

.Select one prev_attr_inst related by curr_attr_inst-
>O_ATTR[R103.RI]

Selects the previous attribute instance - the reason RI is used is because
PAttr_ID (Previous Attribute ID) is used to formalize the relationship R103 -
this means that the selection will find the instance of O_ATTR in which
selected.Attr_ID is equal to curr_attr_inst.PAttr_ID which is
the previous attribute in respect to curr_attr_inst.

 9.1.3.3 Chain Multiplicity & Conditionality

The multiplicity of an instance chain is zero or one (one) if the starting instance
variable has multiplicity zero or one and all relationship traversals in the cha
result have multiplicity zero or one. Otherwise, the multiplicity of the instance
chain is zero, one, or more (many).

One can only be used with an instance chain of multiplicity zero or one, wher
any and many can only be used with an instance chain of multiplicity zero, on
or many.

Method 131

ted

t to
 The
The conditionality of an instance chain is unconditional if all relationship
traversals in the chain are unconditional; otherwise, the instance chain is
conditional.

 9.1.3.4 Where Clause

The where (<condition>) can be used to efficiently filter out a subset of the
instances selected through the from instances of or related by
constructs. The <condition> is applied separately to each object instance selected
through the from instances of or related by constructs - the
instances for which <condition> is TRUE are selected - the instances for which
<condition> is FALSE are not selected.

<condition> is a boolean expression (see “Expressions” on page 145) - the
current instance being selected is referred to by the keyword selected. Here
are some examples.

To select all attributes named Id:

.Select many attr_set from instances of O_ATTR

where (selected.name == "Id")

To select all attributes in objects with keyletters DOG:

.Select many attr_set from instances of O_ATTR

where ("${selected ->O_OBJ[R102]}.key_lett"
== "DOG")

Note: The preceding example uses an instance substitution variable in a quo
string (see “Quoted Strings” on page 144) and an instance chain within the
substitution variable (see “Substitution Variables” on page 151).

 9.1.3.5 Instance Set Iteration

Once a set of instances has been selected, the template designer may wan
specify statements to be carried out on each one of the instances of the set.
Control Statement which supports this is:

132 Step 9: Develop Structural Archetypes

.For each <inst_ref_var> in <inst_ref_set_var>

<stmt_blck>

.End for

where:

<inst_ref_var> ::= reference to 1 object instance

<inst_ref_set_var> ::= reference to 0, 1, or more object instances

<stmt_blck> ::= block of Archetype Language statements

The statements in the .For structure are executed once for each instance in the
set. The iterations are sequential in a repeatable order, i.e., the order of the
instances in a set are consistent from one execution to another. For example:

Start

.Select many obj_set from instances of O_OBJ

.For each obj_inst in obj_set

Object name is ${obj_inst.name}

.End for

Finish

will result in the name of each object being printed on a separate line in the
generated output. Each time the above example is executed, the order of the
object names will be the same.

Note: When instances are added to the generation database, the order of elements
is implementation specific when the order is compared to the order before the
instances where added.

The variable <inst_ref_var> is scoped within the <stmt_blck>, i.e., it out of scope
after the .End for. However, if the scope of <inst_ref_var> needs to extend
beyond the .End for, then define <inst_ref_var> prior to the .For
statement. In the previous example, obj_inst is out of scope (and no longer on
the stack) when the ’Finish’ Literal Text Line is encountered. In the following
example, obj_inst is still in scope (and still on the stack) when the ’Finish’
Literal Text Line is encountered:

Start

.Select any obj_inst from instances of O_OBJ

Method 133
.Select many obj_set from instances of O_OBJ

.For each obj_inst in obj_set

Object name is ${obj_inst.name}

.End for

Object name is ${obj_inst.name}

Finish

Since all instances are ordered and therefore, iteration through instance sets is
sequential, the following statement is provided to break out of the iteration
through the ordered set, presumably because you have found what you were
looking for:

.Break for

 9.1.3.6 While

The while statement provides a general purpose iteration mechanism. This
complements the other iteration mechanism, the for each statement. The
for each statement is a specific purpose iteration mechanism to iterate
through an object instance reference set. The while statement is a general
purpose iteration mechanism to iterate until the while condition is false. The
syntax of the while statement is:

 .while (<boolean expression>)

 <statement>

 <statement>

 ...

 <statement>

 .end while

The statements between the while and end while will be executed in
sequence until the <boolean expression> is false. The condition is checked
before the first iteration.

134 Step 9: Develop Structural Archetypes
A break while statement is available, providing an alternative technique to
end the iteration. The syntax of the break while statement is:

 .while (<boolean expression>)

 <statement>

 <statement>

 .break while

 ...

 <statement>

 .end while

When executed, the break while statement will cause control to be
transferred to the statement after the end while corresponding to the
innermost executing while statement. For example:

 .assign count = 1

 .while (count < 10) // while1

 .while (1 == 1) // while2

 .if (<condition>)

 .break while // break2

 .end if

 .end while // endwhile2

 .if (<condition2>)

 .break while // break1

 .end if

 .end while // endwhile1

Execution of ’break2’ will cause control to transfer to the statement following
’endwhile2’. Execution of ’break1’ will cause control to transfer to the statement
following ’endwhile1’.

Method 135

age
 9.1.3.7 Object Attribute Access

The form of an Attribute Access in the Archetype Language is:

<obj_inst_ref_var>.<attribute>

where:

<obj_inst_ref_var> ::= variable holding a handle to 1 object instance

<attribute> ::= name of object attribute

Great care should be taken when writing object attributes. Writing an object
attribute will permanently affect the value for all future uses of the attribute... -
the new value of the attribute is stored persistently in the generation database.

 9.1.4 Transformer Control Statements
The transformer provides for computational logic.

 9.1.4.1 Assign Statement

The .Assign statement makes use of Expressions (See “Expressions” on p
145).

The .Assign statement has the following syntax:

.Assign <variable> = <expression>

where:

<variable> ::= data item, e.g., object attribute, fragment
attribute, or transient variable.

<expression> ::= expression - usually a calculation using object
attribute access, literal values, ...

When <variable> is an object attribute, the data type of <expression> must be
compatible with the data type of <variable> (See Table 9.2 below).

136 Step 9: Develop Structural Archetypes
If <variable > is a transient variable, then that transient variable follows the
implicit declaration rule. When a transient variable is being implicitly declared
(assigned for the first time), the data type of the transient variable is set to be the
same as the data type of the <expression>. When a transient variable is being re-
assigned, the data type of <expression> must be compatible with the data type of
the <variable> (See Table 9.2 below).

If <variable> is of data type inst_ref<Object>,
inst_ref_set<Object>, or frag_ref<Object>, then <expression>
may be one of the following:

• Transient Variable

• Fragment Attribute

Here are some examples:

.Assign obj_inst = prev_obj_inst

.Assign obj_set = next_obj_set

.Assign attr_inst = base_attr_frag.base_attr_inst

.Assign data_type_frag = attr_data_type_frag

TABLE 9.2 Compatible Assignment Data Types

<variable> Data Type <expression> Data Type Note

boolean boolean

integer integer

real real

integer real Truncates all digits after the decimal
point.

real integer

string string

inst_ref<Object> inst_ref<Object>

inst_ref_set<Object> inst_ref_set<Object>

frag_ref frag_ref

Method 137
 9.1.5 Tester Control Statements
Testers are supported in the Archetype Language with the .If statement:

.If (<condition>)

<stmt_blck>

[.elif (<condition>)

<stmt_blck>]

[.else

<stmt_blck>]

.end if

where:

<condition> ::= expression with boolean result (see
“Expressions” on page 145)

<stmt_blck> ::= block of Archetype Language statements

Many elif (else if) constructs may be present in the same if construct.

Here are some examples:

.If (obj_inst.numb < 100)

literal text...

.elif ((obj_inst.numb >= 200) && (obj_inst.numb < 300))

literal text...

.else

literal text...

.end if

.If ("${obj_inst.descrip:TASK}" == "CLIENT")

source code for client...

.elif ("${obj_inst.descrip:TASK}" == "SERVER")

138 Step 9: Develop Structural Archetypes
source code for server...

.else

.print "Error in specification of
obj_inst.descrip:TYPE"

.exit 1

.end if

.Assign min_state_num = 999999

.Select any min_state_num_inst from instances of SM_STATE

.Select many state_set related by sm_inst->SM_STATE[R501]

.For each state_inst in state_set

.If (state_inst.numb == min_state_num)

.print "OOA Data NOT Audited - 2
states with same numb"

.else if (state_inst.numb < min_state_num)

.Assign min_state_num_inst =
state_inst

.end if

.end for

 9.1.6 Function Control Statements
Functions are supported in the Archetype Language to allow reuse of blocks of
Archetype Language Statements. Functions always return a fragment - a
fragment is a small piece of generated output. The intent of functions is to use
them to build fragments which can be plugged into larger fragments and
eventually into the whole generated file.

To define a function, use the .Function statement:

.Function <function_name>

[.Param <param_type> <param_name>

.Param <param_type> <param_name>

Method 139
...]

<stmt_blck>]

.end function

where:

<function_name> ::= the name of the function

<param_type> ::= the type of the parameter - allowed types are:

boolean

integer

real

string

inst_ref

inst_ref_set

frag_ref

<param_name> ::= the name of the parameter

<stmt_blck> ::= block of Archetype Language statements -
includes Literal Text, Control Statements, and
Substitution Variables

To invoke a function, use the .Invoke statement:

.Invoke [<frag_ref_var> =] <function_name>

(<actual_param>, <actual_param>...)

where:

<frag_ref_var> ::= a transient variable which holds a reference to a
fragment

<function_name> ::= the name of the function being invoked

<actual_param> ::= actual parameter (See Table 9.3 below)

 9.1.6.1 Fragment Attributes

Attributes may be defined for a fragment when the fragment is formed with the
function invocation. The attribute body is always defined - after invocation of

140 Step 9: Develop Structural Archetypes
a function, body will contain the output generated from the Literal Text Lines in
the function.

Additional attributes are defined by declaring transient variables inside the
function of the form:

attr_xxx

For example:

.Function get_attr_type

.Param inst_ref p_attr_inst

.Assign attr_type = "${p_attr_inst.descrip:TYPE}"

.End function

will result in the variable type being available for use through the fragment
reference returned from the invocation of the function:

.Select any dog_inst from instances of O_OBJ where
(selected.name == "Dog")

.Select any dog_attr_inst related by dog_inst-
>O_ATTR[R012]

.Invoke dog_attr_type = get_attr_type (dog_attr_inst)

The type of the attribute
${dog_inst.name}.${dog_attr_inst.name}

is ${dog_attr_type.type}.

Be careful to make sure the attr_xxx variables are in scope when the .End
function is reached. For example:

TABLE 9.3 Actual Parameter Forms

Parameter Type Actual Parameter Forms Allowed

boolean Rvalue of type boolean

integer Rvalue of type integer

real Rvalue of type real

string Rvalue of type string

inst_ref <transient_var> of type inst_ref

inst_ref_set <transient_var> of type inst_set_ref

frag_ref <transient_var> of type frag_ref

Method 141
.Function get_attr_type

.Param integer p_value

.If (p_value < 100)

.Assign attr_new_value = 22

.else

.Assign attr_new_value = 2000;

.end if

.End function

results in the transient variable attr_new_value NOT to become a fragment
attribute since it falls out of scope with the .If statement and therefore, is not
on the stack when the .End function is encountered. A way to handle this
case is:

.Function get_attr_type

.Param integer p_value

.Assign attr_new_value = 0

.If (p_value < 100)

.Assign attr_new_value = 22

.else

.Assign attr_new_value = 2000;

.end if

.End function

 9.1.7 File Control Statements
File Control Statements in Archetype Language allow management of the
Archetype Files.

 9.1.7.1 Emitting Generated Output

142 Step 9: Develop Structural Archetypes

me

 the
,

n-

:

All generated output is buffered as it is generated from interpretation of Literal
Text Lines. To transfer the output from the buffer to a file, use:

.Emit to file "<file_name>"

The .Emit also clears the buffer’s contents. For example:

.Emit to file "/source_code/$_{ss_inst.name}/
$_{obj_inst.name}.cpp"

will result in a file being generated in a directory based on the subsystem na
with a name based on the object name.

If a generated file is emitted and a file of the same name already exists, then
newly generated file is compared to the existing file - if the files are the same
then the existing file is left undisturbed (so that modification times... are left i
tact) - if the files are different, then the existing file is replaced with the newly
generated file.

To clear the contents of the buffer without emitting the contents to a file, use

.Clear

 9.1.7.2 Comments

To add a comment in the Archetype File, use:

.Comment <user_comment>

or

.// <user_comment>

Method 143
At least one white space character must follow the .Comment keyword.

A white space character does not need to follow the .// keyword.

All text to the end of the line after the comment keyword is ignored.

 9.1.7.3 Include

To include another Archetype File, use:

.Include "<file_name>"

When a file is included, a marker is placed on the stack and the interpreter begins
interpretation on the first line of the included file. When all lines in the included
file have been processed, then all variables pushed on the stack since the include
marker was pushed on the stack are considered out of scope (and therefore
popped from the stack) - the interpreter then resumes interpretation on the line
following the .Include statement.

 9.1.7.4 Handling Errors

In handling errors from your Archetype Files, use:

.Print "<error_message>"

to print a message to stderr about the problem which was found and use:

.Exit <exit_status>

to stop the interpreter with integer value <exit_status>.

 9.1.8 Rvalues
An Rvalue is a specification of a literal value or the specification of a variable.

144 Step 9: Develop Structural Archetypes
 9.1.8.1 Literals as Rvalues

Literal values must be able to be entered for the Core Data Types. Table 9.4
below uses example specifications to illustrate how the literal values are
specified.

 9.1.8.2 Quoted Strings

Quoted strings get special handling in the Archetype Language - each Quoted
String is treated as a Literal Text Line and is run through the variable substituter.
For example:

.Assign name = dog_inst.name

and

.Assign name = "${dog_inst.name}"

TABLE 9.4 Literal Specification for Core Data Types

Core Data Type Literal Specification Examples

boolean TRUE

FALSE

integer 0

256

-10

13

real 0.0

256.44

-10.3

3.1415

string “Hello World”

inst_ref<Object> Not Allowed

{inst_ref<Object>} Not Allowed

frag_ref Not Allowed

Method 145
are equivalent. Treating Quoted Strings as Literal Text Lines adds flexibility in
concisely specifying the string value. For example, the following shows
Substitution Variables used in the .if statement and .emit statement:

.Select many obj_set from instances of O_OBJ

.For each obj_inst in obj_set

.if ("${obj_inst.descrip:CLIENT_SERVER}" ==
"CLIENT")

Output statements for client here...

.end if

.emit to file "$_{obj_inst.key_lett}.cc"

.end for

Since the Quoted Strings get run through the Literal Text Substituter, use $$ to
yield one $ character.

In addition, use "" to yield one " character.

 9.1.8.3 Variables as Rvalues

The variables of the following types may be used as values:

• <transient_variable> of type boolean, integer, real, or string

• <inst_ref_var>.<attribute> where <attribute> is of type boolean, inte-
ger, real, or string

• <frag_ref_var>.<attribute> where <attribute> is of type boolean, inte-
ger, real, or string

 9.1.9 Expressions
The Archetype Language supports simple expressions and compound
expressions.

 9.1.9.1 Simple Expressions

Simple expressions are single unary or binary operations:

146 Step 9: Develop Structural Archetypes
(<unary_operator> <operand>)

(<operand> <binary_operator> <operand>)

where:

<unary_operator> ::= unary operator

<binary_operator> ::= binary operator

<operand> ::= operand, e.g., literal value, object attribute, or
transient variable

Here are some examples:

.if (empty obj_inst)

.assign number_selected = cardinality obj_set

.if (obj_inst.numb >= 100)

.assign attr_decl = "${attr_inst.descrip:TYPE}
$cr{attr_inst.name};"

 9.1.9.2 Compound Expressions

Simple expressions can be combined to form a compound expressions:

(<unary_operator> <expression>)

(<expression> <binary_operator> <operand>)

(<operand> <binary_operator> <expression>)

(<expression> <binary_operator> <expression>)

where:

<unary_operator> ::= unary operator

<binary_operator> ::= binary operator

<operand> ::= operand, e.g., literal value, object attribute, or
transient variable

<expression> ::= expression - either a simple expression or a
compound expression

Method 147
Note the required use of the (and) characters to delimit expressions in a
compound expression. This takes away the issues surrounding precedence and
associativity of operators.

Here are some examples:

.if ((x > 1) AND (x < 10))

.assign full_name = ((first_name + middle_name) +
last_name)

.select many processor1_objs from instances of O_OBJ
where ((“${selected.descrip:TASK}” == “TASK1”) OR
(“${selected.descrip:TASK}” == “TASK4”))

 9.1.9.3 Operations

TABLE 9.5 Core Unary Operators

Operator Description

not Logical Negation

empty inst_ref<Object> or {inst_ref<Object>} test for empty set

not_empty inst_ref<Object> or {inst_ref<Object>} test for not empty set

first Test if the {inst_ref<Object>} internal cursor is on the first in the set

not_first Test if the {inst_ref<Object>} internal cursor is not on the first in the set

last Test if the {inst_ref<Object>} internal cursor is on the last in the set

not_last Test if the {inst_ref<Object>} internal cursor is not on the last in the set

cardinality Count of items in {inst_ref<Object>}

148 Step 9: Develop Structural Archetypes
TABLE 9.6 Core Binary Operators

Operator Description

and Logical And

or Logical Inclusive Or

+ Arithmetic Addition (integer & real) or Concatenation (string)

- Arithmetic Subtraction

* Arithmetic Multiplication

/ Quotient from Arithmetic Division

% Remainder from Arithmetic Division

< Less-than

<= Less-than or Equal-to

== Equal-to

!= Not-equal-to

>= Greater-than or Equal-to

> Greater-than

TABLE 9.7 Core Unary Operations

Operator Operand Result

not boolean boolean

empty

not_empty

inst_ref<Object> boolean

empty

not_empty

first

not_first

last

not_last

{inst_ref<Object>} boolean

cardinality {inst_ref<Object>} integer

Method 149
TABLE 9.8 Core Binary Operations

Left Operand Operator Right Operand Result

boolean and or == != boolean boolean

integer + - * / % integer integer

integer < <= == != >= > integer boolean

integer + - * / real real

integer < <= == != >= > real boolean

real + - * / integer real

real < <= == != >= > integer boolean

real + - * / real real

real < <= == != >= > real boolean

string + string string

string < <= == != >= > string boolean

TABLE 9.9 Set Operations

Left Operand Operator Right Operand Result

<inst_ref> | <inst_ref> <inst_ref_set>

<inst_ref> & <inst_ref> <inst_ref_set>

<inst_ref> - <inst_ref> <inst_ref_set>

<inst_ref> == <inst_ref> <inst_ref_set>

<inst_ref> != <inst_ref> <inst_ref_set>

<inst_ref> | <inst_ref_set> <inst_ref_set>

<inst_ref> & <inst_ref_set> <inst_ref_set>

<inst_ref> - <inst_ref_set> <inst_ref_set>

<inst_ref_set> | <inst_ref> <inst_ref_set>

<inst_ref_set> & <inst_ref> <inst_ref_set>

<inst_ref_set> - <inst_ref> <inst_ref_set>

<inst_ref_set> | <inst_ref_set> <inst_ref_set>

150 Step 9: Develop Structural Archetypes
<inst_ref_set> & <inst_ref_set> <inst_ref_set>

<inst_ref_set> - <inst_ref_set> <inst_ref_set>

<inst_ref_set> == <inst_ref_set> <inst_ref_set>

<inst_ref_set> != <inst_ref_set> <inst_ref_set>

TABLE 9.9 Set Operations

Left Operand Operator Right Operand Result

Method 151

9)

 9.1.10 Substitution Variables
Literal text lines can contain substitution variables which allow information to be
pulled out of the Generation Database and be placed into the generated files.

A substitution variable takes on the following form:

$ <format> { <inst_ref_var> . <attribute> [: <parse_keyword>] }

or

$ <format> { <inst_chain> . <attribute> [: <parse_keyword>] }

or

$ <format> { <frag_ref_var> . <attribute> }

or

$ <format> { <transient_var> }

where:

<format> ::= represents instructions on how to format the
string which is substituted into the generated
file

<inst_ref_var> ::= reference to an object instance from the
OOA of OOA

<inst_chain> ::= an instance chain which results in one
instance (see “Instance Chains” on page 12

<frag_ref_var> ::= reference to a fragment which has been returned
from a function

<attribute> ::= attribute of the object referred to by
<inst_ref_var> or attribute of the fragment
referred to by <frag_ref_var>

<parse_keyword> ::= represents a keyword which can be parsed
for in the string which is substituted into the
generated file

Here are some examples:

${obj_inst.name}

$_{ss_inst.name}

${dt_inst.descrip:TYPE}

${attr_inst->O_OBJ[R102].key_lett}

$_{rattr_inst->O_BATTR[R113]->O_ATTR[R106].name}

152 Step 9: Develop Structural Archetypes
 9.1.10.1 Format

<format> is needed to allow the legal names in OOA to be transformed into legal
names in the generated file. For example, spaces are allowed in object names in
OOA but are not allowed in class names in C++ - if the object name from the
OOA is to be used as the class name in a generated C++ file, then the object
name must be transformed into a legal C++ name.

The <format> characters allowed are listed in Table 9.10 below.

Here are some examples:

TABLE 9.10 Substitution Variable Format Characters

Format Character Format Affect

U or u Upper - make all characters upper case

C or c Capitalize - make the first character of each word capitalized and all
other characters of a word lower case

L or l Lower - make all characters lower case

_ Underscore - change all white space characters to underscore charac-
ters

R or r Remove - remove all white space

Note: The removal of white space will occur after the capitalization
has taken place in the case of the CR or RC combination.

Input Format Output

Objective Spectrum u OBJECTIVE SPECTRUM

Objective Spectrum u_ OBJECTIVE_SPECTRUM

Objective Spectrum ur OBJECTIVESPECTRUM

ObjecTIVE SpecTRum c Objective Spectrum

ObjecTIVE SpecTRum c_ Objective_Spectrum

ObjecTIVE SpecTRum cr ObjectiveSpectrum

ObjecTIVE SpecTRum l objective spectrum

ObjecTIVE SpecTRum l_ objective_spectrum

ObjecTIVE SpecTRum lr objectivespectrum

Method 153

cts

e

ss
 9.1.10.2 Parse Keyword

The parse-keyword is used to facilitate simplified file generation through
avoiding ‘expanding’ the OOA of OOA. Rather than adding ‘expansion’ obje
which are related to OOA of OOA objects to capture design information, the
parse-keyword can be placed directly in the OOA capture and what follows th
parse-keyword until the next new-line character is available with the
$format{instance-ref.attribute:parse-keyword} construct. For example, if an
object description contains:

This attribute captures the name of the quick brown fox
who jumped over the lazy brown dog.

TYPE: String

LENGTH: 64

then type TYPE can be pulled out with:

${attr_inst.descrip:TYPE}

and the LENGTH can be pulled out with:

${attr_inst.descrip:LENGTH}

Note that the above example explicitly places design/implementation information
into the analysis - this has ramifications on the reusability of the analysis acro
different designs and implementation technologies. Use with care!

 9.1.10.3 Information Substitution Variables

There are some special substitution variables available which can be used
anywhere:

${info.date}
${info.user_id}
${info.arch_file_name}
${info.arch_file_line}

154 Step 9: Develop Structural Archetypes
${info.interpreter_version}
${info.interpreter_platform}
${info.unique_num}

Obviously, info is a keyword and can not be used as a transient variable name.

${info.unique_num} generates a unique integer each time it is referenced.
For example, the first time it is referenced, it may produce 1, the next time 2, the
next time 3... The order of the unique numbers generated will be exactly the same
from one invocation of the Archetype Interpreter to the next.

Automation 155
 9.2 Automation

 9.2.1 Overview
Files can be automatically generated by using an archetype file and an archetype
interpreter as shown in Figure 9.2.1.1

Figure 9.2.1.1. Archetype Interpretation Architecture

An archetype file is used as input into the archetype interpreter - it acts as a
specification of the rules by which to automatically create one or more text files.
The archetype language controls how the file is generated. The archetype
language is a mix of literal text, control statements, and substitution variables.

gen_file

.SELECT obj_inst

.POPULATE obj_inst

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class ${obj_inst.name}

{

.ITERATE attr_inst

int get_${attr_inst.name}

();

void set_${attr_inst.name}

();

.END_ITERATE

};

xxx.arc
Generated Files

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

gen_import

.CREATE TABLE S_DOM

.CREATE TABLE S_SS

.CREATE TABLE S_EE

.CREATE TABLE S_EEEVT

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

xxx.sql

.CREATE TABLE S_DOM

.CREATE TABLE S_SS

.CREATE TABLE S_EE

.CREATE TABLE S_EEEVT

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_SS

.CREATE TABLE S_EE

.CREATE TABLE S_EEEVT

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

xxx.ooa

analyst

xxx.gen

156 Step 9: Develop Structural Archetypes
Generally, one file archetype file exists for each type of file which is generated.
For example, for C++ code generation, one file archetype file exists for header
files, one for the source files, and one for make files.

The xxx.gen file is a generation database being built by the gen_import
command. Note that the xxx.gen file must reside physically on the
BridgePoint server similar to analyst .ooa files.

 9.2.2 Running gen_import
gen_import must be run at least twice to create the generation database for
translation. The first run of gen_import will be with provided
ooa_schema.sql file to build all the necessary TABLES to support
accessing data from any object in the OOA of OOA or accessing data via any
relationship in the OOA of OOA. The format of the first gen_import command
is:

gen_import database.gen ooa_schema.sql

The second run of gen_import will populate the generation database with the data
from the application OOA. You must export data from analyst using the Export-
SQL option into a file ending with the .sql suffix. Do not leave the Include
Graphical Data check box checked. Graphical data has no role in most
translation you are trying to translate the graphical data into another form. The
format of the second gen_import is:

gen_import [-d num] database.gen data_file.sql

Note that the -d option is for specifying domain code between 0-15 inclusive; if
domain code is not provided, a unique one will be chosen/allocated for this
import.

You are now ready to generate code.

 9.2.3 Running gen_file
The database.gen file is the generation database created by the gen_import
command. The archetype.arc file contains the archetype for a portion of
the target architecture.

There are several options on the gen_file command.

Automation 157

he
per

ase.

e

d it
The “-# num” allows the generation of a specified number of output files for t
archetype. For example, if an archetype specifies the generation of one file
object, potentially many files are generated from one archetype. This option
allows control in order to generate a limited number during a development ph

The “-q” option will cause gen_file to quit after the first error. Without this
option, an incorrectly specified .arc can iteratively generate errors.

The “-f file” allows the generation of a specific file.

The “-l” option specifies that the output will be directed to a file with the nam
database.gen_log.

The usage of gen_file is:

gen_file [-# num] [-l] [-q] [-f file] database.gen
archetype.arc

You simply write an archetype file and run it through the gen_file process an
generates files per the instructions!

 9.2.4 Using Makefiles
Invocations of gen_import and gen_file can be placed in makefiles to
fully automate the process of File Generation. Here are some tips:

• The exit status of gen_import and gen_file is the number of errors
which have occurred during execution. Make runs smoothly as long as the
exit status of each command is 0 - if the exit status of a command is not 0,
then make stops execution of the commands for that rule... Therefore, your
make will respond when the errors have occurred during execution of
gen_import or gen_file.

• In gen_file, the Control Statement ‘.exit <exit_status>’ causes the
gen_file to exit with the exit status <exit_status> - this can allow the user
to get make to respond upon errors found in the generation.

158 Step 9: Develop Structural Archetypes

STEP 10

Develop Action Archetypes

160 Step 10: Develop Action Archetypes

Method 161
 10.1 Method
Action Specifications are specified in the Action Language within the
Application & Service OOAs. The Actions must be converted to the Target
Source Code. This is accomplished through Action Generation.

Action Source Code is generated using a technique very similar to that used by a
compiler to produce machine code from a high level language. However, one
major difference exists: the last step of the Action Generation is done through a
set of user-specified Fragment Generation Functions so that the user has
complete control over the process of generation and therefore can generate
source code in any Programming Language (C, C++, Smalltalk, Fortran,
COBOL, Lisp, Assembler, 4GL...) and any Software Architecture.

162 Step 10: Develop Action Archetypes
The process is of Action Generation is:

The steps of the process are:

1. Script Generation - break Action Language into fundamental components -
fragments - from the inside out... - build smallest fragments first, combine
into larger fragments, finally yield one resulting fragment.

2. Action Source Code Generation - plug in user definitions for each fragment -
will generate small fragments of Target Source Code, combine the small
fragments into Larger fragments of Target Source Code, and finally yield the
resulting Target Action Source Code.

Action Language
(user specified)

Script Generator

Fragment Generation
Script

(Automatically gener-
ated intermediate

product)

Action Source Code
Generator

for (int i = 0;

(i < cardinality);

i++)

{

}

Source Code
Final Product

Fragment Generation
Functions

User Provided

Select many cats from
instances of CAT;

For each cat in cats

Generate DG1 to cat;

End for;

Function stmt_select

param frag_ref result

param string obj

for (int i = 0;

(i < cardinality);

i++)

{

}

v1 = var_declare_inst_ref

s1 = stmt_select (v1,
“CAT”)

b1 = blck_append_stmt

a1 = actn_append_blck;

Figure 10.1.0.1. Action Generation Process

Method 163
 10.1.1 Invoking Fragment Generation
For Script Generation only:

.AL_xlate <action_location> <action_inst_ref> script to file
“ <file_name>”

where:

<action_location> ::= keyword either instance_sm or
assigner_sm ..

<action_inst_ref> ::= Variable of type inst_ref which holds a
reference to the an instance of the OOA of OOA
object SM_ACT.

<file_name> ::= Specification of file for output of Fragment
Generation Script

For Script Interpretation:

.Include " <file_name>"

where:

<file_name> ::= Specification of file for output of Fragment
Generation Script

For both Script Generation and Script Interpretation:

.AL_xlate <action_location> <action_inst_ref>

where:

<action_location> ::= keyword either instance_sm or
assigner_sm ..

<action_inst_ref> ::= Variable of type inst_ref which holds a
reference to the an instance of the OOA of OOA
object SM_ACT.

164 Step 10: Develop Action Archetypes
For example,. a simple File Archetype using Action Generation may look like:

Include “Frag-gen.arc”

Select many state_models from instances of SM_ISM

For each state_model in state_models

Select many states related by state_model -> SM_SM
[R517] ->

SM_STATE [R301]

For each state in states

OS_${state.name} ()

{

Select one action related by state -> SM_MOAH
[R511] -> SM

->SM_AH [R513] ->SM_ACT [R514]

AL_xlate instance_sm action

}

End for

Emit to file “{$state_model.name}.cpp”

End for

 10.1.2 Fragment Generation Script
The strategy behind fragment generation is to begin with the innermost statement
components and convert them to Target Source Code, and then move to
combining small fragments into larger fragments... until a statement is formed -
statements are combined into blocks & blocks into actions...

For example, lets examine the following Action Language statement and
generation of equivalent C code:

Assign x = rcvd_evt.a + 2;

Method 165
We begin by building a fragment for rcvd_evt.a:

get_evt_data_item_a ()

Next, build a fragment for the literal integer value 2:

2

Next, combine the rcvd_evt.a fragment with the 2 fragment with the binary
addition operator:

get_evt_data_item_a () + 2

Finally, build an assignment statement from the binary operation:

x = get_evt_data_item_a () + 2;

We extend this approach to all statement components in the Action Language.

A script can be generated to allow the user to furnish each fragment as it is
needed - the script used for conversion of:

Assign x = rcvd_evt.a + 2;

is made up of a series of calls to fragment generation functions (see Section
2.2.1.2) and would look like:

.Invoke a001 = actn_begin (actn_inst)

.Invoke b001 = blck_begin ()

.Invoke v001 = var_declare_self (actn_inst)

.Invoke r001 = rval_read_rcvd_evt_di (actn_inst, “a”)

.Invoke r002 = rval_literal_integer (“2”)

.Invoke r003 = rval_binary_op (r001, “+”, r002)

.Invoke v002 = var_declare (“x”)

.Invoke s001 = stmt_assign_transient_var (v002, TRUE,
r003)

.Invoke b002 = blck_append_stmt (b001, s001)

166 Step 10: Develop Action Archetypes
.Invoke b003 = blck_var_out_of_scope (b002, v002)

.Invoke b004 = blck_var_out_of_scope (b003, v001)

.Invoke b005 = blck_end (b004)

.Invoke a002 = actn_append_blck (a001, b005)

.Invoke a003 = actn_end (a002)

${a003.body}

Notice that the script begins by requesting a fragment for the the innermost
statement component and passes that fragment into requests for larger fragments
which eventually result in the whole statement converted to source code.

 10.1.3 Fragment Generation Functions
A Fragment Generation Function exists for each Action Language Statement
Component as well as the Action Language Statements, Statement Blocks, and
the Action itself. The role of some Fragment Generation Functions is to build a
fragment from scratch, i.e., from string parameters and Generation Database
lookups. The role of other Fragment Generation Functions are to assemble small
fragments into larger fragments.

Generator functions have been grouped into the following categories:

• Action

• Statement Block

• Statement

• Rvalue

• Instance Chain

• Parameter List

Each type of Generator Function will be discussed in the following sections.

 10.1.3.1 Action Generator Functions

An action is really a block - however, special handling may be required, e.g.,
declaration statements may need to be output at the beginning of the action only.
So, the Action Generator Functions provide the mechanism for this potential
special handling.

Method 167
 10.1.3.2 Statement Block Generator Functions

These Generator Functions are similar to the Action Generator Functions only
they operate on a block of Action Language Statements.

 10.1.3.3 Statement Generator Functions

These Generator Functions correspond directly to the Action Language
Statements - some Action Language Statements may have more than one
Generator Function because of differing variations in that statement.

TABLE 10.11 Action Generator Functions

Generator Function Name Parameter Name Param Type

actn_begin p_actn_obj_inst inst_ref<SM_ACT>

actn_append_blck p_actn

p_blck

frag_ref <actn>

frag_ref<blck>

actn_end p_actn frag_ref<actn>

TABLE 10.12 Statement Block Generator Functions

Generator Function Name Parameter Name Param Type

blck_begin

blck_append_stmt p_blck

p_stmt

frag_ref<blck>

frag_ref<stmt>

blck_var_out_of_scope p_blck

p_var

frag_ref<blck>

frag_ref<var>

blck_end p_blck frag_ref<blck>

168 Step 10: Develop Action Archetypes
TABLE 10.13 Statement Generator Functions

Generator Function Name Parameter Name Param Type

stmt_select_related_by p_cardinality

p_select_var

p_is_implicit_decl

p_chain

string (“ONE”, “ANY”,
“MANY”)

frag_ref<var>

boolean

frag_ref<chain>

stmt_select_from_instances_of p_cardinality

p_select_var

p_is_implicit_decl

p_obj_keyletters

string (“ANY”,
“MANY”)

frag_ref<var>

boolean

string

stmt_for p_inst_ref_var

p_is_implicit_decl

p_inst_ref_set_var

p_for_blck

frag_ref<var>

boolean

frag_ref<var>

frag_ref<blck>

stmt_create_obj_inst_no_var p_obj_keyletters string

stmt_create_obj_inst p_inst_ref_var

p_is_implicit_decl

p_obj_keyletters

frag_ref<var>

boolean

string

stmt_delete_obj_inst p_inst_ref_var frag_ref<var>

stmt_relate p_inst_ref_1_var

p_inst_ref_2_var

p_Rnum

p_rel_phrase

frag_ref<var>

frag_ref<var>

integer

stmt_relate_using p_inst_ref_1_var

p_inst_ref_2_var

p_Rnum

p_assoc_inst_ref_var

p_rel_phrase

frag_ref<var>

frag_ref<var>

integer

frag_ref<var>

Method 169
stmt_unrelate p_inst_ref_1_var

p_inst_ref_2_var

p_Rnum

p_rel_phrase

frag_ref<var>

frag_ref<var>

integer

stmt_unrelate_using p_inst_ref_1_var

p_inst_ref_2_var

p_Rnum

p_assoc_inst_ref_var

p_rel_phrase

frag_ref<var>

frag_ref<var>

integer

frag_ref<var>

stmt_generate_obj_inst p_evt_label

p_param

p_inst_ref_var

string

frag_ref<param>

frag_ref<var>

stmt_generate_assigner p_evt_label_str

p_param

p_obj_keyletters

string

frag_ref<param>

string

stmt_generate_creation p_evt_label

p_evt_frag

p_obj_kl

stmt_generate_ext_entity p_evt_label

p_param

p_ext_entity_keyletters

string

frag_ref<param>

string

stmt_generate_ext_inst p_evt_inst_var_frag

stmt_create_evt_obj_inst p_evt_inst_var

p_is_implicit_decl

p_evt_label

p_param

p_obj_inst_ref_var

string

boolean

string

frag_ref<param>

frag_ref<var>

stmt_assign_obj_attr p_inst_ref_var

p_attr_name

p_expression_rval

frag_ref<var>

string

frag_ref<rval>

TABLE 10.13 Statement Generator Functions

Generator Function Name Parameter Name Param Type

170 Step 10: Develop Action Archetypes
 10.1.3.4 Rvalue Generator Functions

These Generator Functions are to handle expressions which contain calculations
and tests.

stmt_assign_transient_var p_transient_var

p_is_implicit_decl

p_expression_rval

frag_ref<var>

boolean

frag_ref<rval>

stmt_transform_void p_obj_keyletters

p_method_name

p_param

string

string

frag_ref<param>

stmt_if p_condition_rval

p_if_blck

frag_ref<rval>

frag_ref<blck>

stmt_else p_else_blck frag_ref<blck>

stmt_bridge_void p_ext_entity_keyletters

p_method_name

p_param

string

string

frag_ref<param>

TABLE 10.14 Rvalue Generator Functions

Generator Function Name Parameter Name Param Type

rval_literal_boolean p_boolean_value string (“TRUE”,
“FALSE”)

rval_literal_integer p_integer_value string

rval_literal_real p_real_value string

rval_literal_string p_string_value string

rval_read_rcvd_evt_di p_actn_obj_inst

p_evt_di_name

inst_ref<SM_ACT>

string

rval_read_obj_attr p_inst_ref_var

p_attr_name

frag_ref<var>

string

rval_read_transient_var p_transient_var frag_ref<var>

TABLE 10.13 Statement Generator Functions

Generator Function Name Parameter Name Param Type

Method 171
 10.1.3.5 Instance Chain Generator Functions

These Generator Functions support conversion of the instance chains in select
statements to source code.

 10.1.3.6 Parameter List Generator Functions

rval_transform p_obj_keyletters

p_method_name

p_param

string

string

frag_ref<param>

rval_bridge p_ext_entity_keyletters

p_method_name

p_param

string

string

frag_ref<param>

rval_unary_op p_operator

p_operand_rval

string

frag_ref<rval>

rval_binary_op p_left_operand_rval

p_operator

p_right_operand_rval

frag_ref<rval>

string

frag_ref<rval>

TABLE 10.15 Instance Chain Generator Functions

Generator Function Name Parameter Name Param Type

chain_begin p_cardinality

p_begin_inst_ref_var

string (“ONE”, “ANY”,
“MANY”)

string

chain_add_link p_chain

p_obj_keyletters

p_Rnum

p_rel_phrase

frag_ref<chain>

string

integer

string

chain_end p_chain frag_ref<chain>

TABLE 10.14 Rvalue Generator Functions

Generator Function Name Parameter Name Param Type

172 Step 10: Develop Action Archetypes
 10.1.3.7 Variable Generator Functions

TABLE 10.16 Parameter List Generator Functions

Generator Function Name Parameter Name Param Type

param_begin_evt_obj_inst p_evt_label string

param_begin_evt_assigner p_evt_label string

param_begin_evt_creation p_evt_label

param_begin_evt_ext_entity p_evt_label string

param_begin_transform p_obj_keyletters

p_method_name

string

string

param_begin_bridge p_ext_entity_keyletters

p_method_name

string

string

param_add p_param

p_param_name

p_param_rval

frag_ref<param>

string

frag_ref<rval>

param_end p_param frag_ref<param>

TABLE 10.17 Variable Generator Functions

Generator Function Name Parameter Name Param Type

var_declare_self_obj_inst_ref p_actn_obj_inst inst_ref<SM_ACT>

var_declare_obj_inst_ref p_var_name

p_obj_keyletters

string

string

var_declare_obj_inst_ref_set p_var_name

p_obj_keyletters

string

string

var_declare_evt_inst p_var_name

p_obj_keyletters

string

string

var_declare p_var_name string

Automation 173
 10.2 Automation

 10.2.1 Overview
Action Source Code is generated using a technique very similar to that used by a
compiler to produce machine code from a high level language. However, one
major difference exists: the last step of the Action Generation is done through a
set of user-specified Fragment Generation Functions so that the user has
complete control over the process of generation and therefore can generate
source code in any Programming Language (C, C++, Smalltalk, Fortran,
COBOL, Lisp, Assembler, 4GL...) and any Software Architecture.

Figure 10.2.1.1. Archetype Interpretation Architecture

.SELECT obj_inst

.POPULATE obj_inst

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class ${obj_inst.name}

{

.ITERATE attr_inst

int get_${attr_inst.name}

();

void set_${attr_inst.name}

();

.END_ITERATE

};

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

// This File is generated

//

// WARNING:

// DO NOT EDIT!!

//

class Customer

{

int get_name ();

void set_name (int);

int get_ssn ();

void set_ssn (int)

};

.CREATE TABLE S_DOM

.CREATE TABLE S_SS

.CREATE TABLE S_EE

.CREATE TABLE S_EEEVT

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_SS

.CREATE TABLE S_EE

.CREATE TABLE S_EEEVT

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_SS

.CREATE TABLE S_EE

.CREATE TABLE S_EEEVT

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

.CREATE TABLE S_DOM

analyst

xxx.ooa

xxx.arc

xxx.sql

gen_import

xxx.gen

gen_file

Generated
Files

174 Step 10: Develop Action Archetypes
Figure 10.2.1.2. Action Source Code Generation.

Figure 10.2.1.2 shows the steps involved in Action Generation

Select many cats from
instances of CAT;

For each cat in cats

Generate DG1 to cat;

End for;

Select many cats from
instances of CAT;

For each cat in cats

Generate DG1 to cat;

End for;

Select many cats from
instances of CAT;

For each cat in cats

Generate DG1 to cat;

End for;

Select many cats from
instances of CAT;

For each cat in cats

Generate DG1 to cat;

End for;

Script
Generator

Action Specification

Fragment
Generation

Script

Source Code

Fragment
Generator
Functions

Action
Source Code

Generator

Automation 175
Figure 10.2.1.3. Action Generation Process

Figure 10.2.1.3 shows the Action Generation Process.

for (int i = 0;

(i < cardinality);

i++)

{

}

Select many cats from
instances of CAT;

For each cat in cats

Generate DG1 to cat;

End for;

Function stmt_select

param frag_ref result

param string obj

for (int i = 0;

(i < cardinality);

i++)

{

}

v1 = var_declare_inst_ref

s1 = stmt_select (v1,
“CAT”)

b1 = blck_append_stmt

a1 = actn_append_blck;

Action Language
(user specified)

Source Code
Final Product

Fragment Generation
Script (Automatically

generated intermediate
product)

Fragment
Generation
Functions

User Provided

Script
Generator

Action
Source Code

Generator

176 Step 10: Develop Action Archetypes

Index
Symbols
148

- 148
!= 148
% 148
* 148
+ 148
/ 148
// 142
== 148
> 148
>= 148

A
Access Path 88
Action 110
Action Generator Functions 166
Action Home 110
Action Source Code Generation 162
actn_append_blck 167
actn_begin 167
actn_end 167
AL_xlate 163
and 148
any 128
Architectural Decisions 8

178 Index
Architecture Blueprint 1
Architecture Characterization 3
Architecture Design 13
Assign 135
Assign Statement 135
Assigner State Model 113
assigner_sm 163
Associative Relationship 69
Attribute 46
Attribute Reference in Object 51
Automation 155, 173

B
Base Attribute 48
blck_append_stmt 167
blck_begin 167
blck_end 167
blck_var_out_of_scope 167
boolean 136
Bridge 31
Bridge Parameter 32
BridgePoint - Automation iii
BridgePoint - OOA iii
BridgePoint - Tool Guide iii

C
CA_ACC 88
CA_COMM 84
CA_EESMC 84
CA_EESME 86
CA_SMEEA 89
CA_SMEEC 85
CA_SMEED 90
CA_SMEEE 87
CA_SMOA 88
CA_SMOAA 89
CA_SMSMC 85
CA_SMSME 87
Cant Happen 105
cardinality 147
chain_add_link 171
chain_begin 171
chain_end 171
Clear 142
Comment 142
Comments 142
Communication Path 84
Composition Relationship 73
Compound Expressions 146
Control Organization 10

Index 179
Core Data Type 30
Creation Transition 107

D
Data Access Control Statements 128
Data Organization 8
Data Type 29
Database 7
Derived Base Attribute 49
Develop Action Archetypes 159
Develop Structural Archetypes 123
Documentation Roadmap iii
Domain 20

E
EE to SM Comm Path 84
EE to SM Event Comm 86
elif 137
else 137
Emit to file 142
Emitting Generated Output 141
empty 147
end function 139
end if 137
Event Ignored 105
Event Supplemental Data 112
Exit 143
Expressions 145
External Entity 22
External Entity Data Item 24
External Entity Event 25
External Entity Event Data 28
External Entity Event Data Item 27
External Entity in Model 23

F
File Control Statements 141
first 147
Format 152
frag_ref 136
Fragment Attributes 139
Fragment Generation 163
Fragment Generation Functions 166
Fragment Generation Script 164
from instances of 128
Function 138
Function Control Statements 138

G
gen_file 156

180 Index
gen_import 156
General Language Attributes 126

H
Handling Errors 143

I
If 137
Implementation Technologies 6
Implemented Service Domains 8
Imported Object 45
Include 143, 163
info.arch_file_line 153
info.arch_file_name 153
info.date 153
info.interpreter_platform 154
info.interpreter_version 154
info.unique_num 154
info.user_id 153
Information Substitution Variables 153
inst_ref 136
inst_ref_set 136
Instance Chain Generator Functions 171
Instance Selection 128
Instance State Model 112
instance_sm 163
integer 136
Invoke 139

L
last 147
Literal Text 127
Literals as Rvalues 144

M
many 128
Mealy Action Home 109
Mealy State Model 108
Method 5, 15, 125, 161
Moore Action Home 109
Moore State Model 108

N
New Base Attribute 49
New State Transition 104
No Event Transition 107
not 147
not_empty 147
not_first 147
not_last 147

Index 181
O
O_ATTR 46
O_BATTR 48
O_DBATTR 49
O_ID 47
O_IOBJ 45
O_NBATTR 49
O_OBJ 44
O_OIDA 48
O_RATTR 50
O_REF 51
O_RTIDA 53
O_TFR 53
O_TPARM 54
Object 44
Object and Attribute Descriptions 20, 44, 64, 84, 100
Object As Associated One Side 69
Object As Associated Other Side 70
Object As Associator 71
Object As Composition One Side 74
Object As Composition Other Side 75
Object As Simple Formalizer 68
Object As Simple Participant 67
Object As Subtype 73
Object As Supertype 72
Object Attribute Access 135
Object Identifier 47
Object Identifier Attribute 48
Object in Relationship 64
one 128
Operating System 6
Operations 147
or 148

P
Param 138
param_add 172
param_begin_bridge 172
param_begin_evt_assigner 172
param_begin_evt_ext_entity 172
param_begin_evt_obj_inst 172
param_begin_transform 172
param_end 172
Parameter List Generator Functions 171
Parse Keyword 153
Print 143
Programming Language 6

Q
Quoted Strings 144

182 Index
R
R_AONE 69
R_AOTH 70
R_ASSOC 69
R_ASSR 71
R_COMP 73
R_CONE 74
R_COTH 75
R_FORM 68
R_OIR 64
R_PART 67
R_REL 64
R_RGO 66
R_RTO 65
R_SIMP 66
R_SUB 73
R_SUBSUP 72
R_SUPER 72
real 136
Referential Attribute 50
Referred To Identifier Attribute 53
Referred To Object in Rel 65
Referring Object in Rel 66
related by 128
Relationship 64
Relationship Descriptions 34, 56, 77, 91, 114
rval_binary_op 171
rval_bridge 171
rval_literal_boolean 170
rval_literal_integer 170
rval_literal_real 170
rval_literal_string 170
rval_read_obj_attr 170
rval_read_rcvd_evt_di 170
rval_read_transient_var 170
rval_transform 171
rval_unary_op 171
Rvalue Generator Functions 170
Rvalues 143

S
S_BPARM 32
S_BRG 31
S_CDT 30
S_DOM 20
S_DT 29
S_EE 22
S_EEDI 24
S_EEEDI 27
S_EEEDT 28

Index 183
S_EEEVT 25
S_EEM 23
S_SS 21
S_UDT 30
Script Generation 162
script to file 163
Select 128
Simple Expressions 145
Simple Relationship 66
SM to EE Access Path 89
SM to EE Comm Path 85
SM to EE Data Item Access 90
SM to EE Event Comm 87
SM to OBJ Access Path 88
SM to OBJ Attribute Access 89
SM to SM Event Comm 87
SM_ACT 110
SM_AH 110
SM_ASM 113
SM_CH 105
SM_CRTXN 107
SM_EIGN 105
SM_EVT 101
SM_EVTDI 111
SM_ISM 112
SM_MEAH 109
SM_MEALY 108
SM_MOAH 109
SM_MOORE 108
SM_NETXN 107
SM_NSTXN 104
SM_SDI 112
SM_SEME 103
SM_SM 100
SM_STATE 100
SM_SUPDT 112
SM_TXN 106
Source Code Organization 11
Special Characters in Literal Text Lines 127
State Event Matrix Entry 103
State Model 100
State Model Event 101
State Model Event Data Item 111
State Model State 100
Statement Block Generator Functions 167
Statement Generator Functions 167
stmt_assign_obj_attr 169
stmt_assign_transient_var 170
stmt_bridge_void 170
stmt_create_evt_obj_inst 169

184 Index
stmt_create_obj_inst 168
stmt_create_obj_inst_no_var 168
stmt_delete_obj_inst 168
stmt_else 170
stmt_for 168
stmt_generate_assigner 169
stmt_generate_ext_entity 169
stmt_generate_obj_inst 169
stmt_if 170
stmt_relate 168
stmt_relate_using 168
stmt_select_from_instances_of 168
stmt_select_related_by 168
stmt_transform_void 170
stmt_unrelate 169
stmt_unrelate_using 169
string 136
Substitution Variables 151
Subsystem 21
Subsystem ‘Communication & Access’ 81
Subsystem ‘Object’ 41
Subsystem ‘Relationship’ 61
Subsystem ‘State Model’ 97
Subsystem ‘Subsystem’ 17
Subtype/Supertype Relationship 72
Supplemental Data Items 112
SW Arch Implementation 121
Syntax Notation 126

T
Tester Control Statements 137
to SM Comm Path 85
Transformer 53
Transformer Control Statements 135
Transformer Parameter 54
Transition 106

U
User Data Type 30
User Interface 7
Using Makefiles 157

V
var_declare 172
var_declare_evt_inst 172
var_declare_obj_inst_ref 172
var_declare_obj_inst_ref_set 172
var_declare_self_obj_inst_ref 172
Variable Generator Functions 172
Variables as Rvalues 145

Index 185
W
where 128
While 133

186 Index

	BridgePoint® - Automation
	Automation
	Use, examination, reproduction, copying, transfer, and/or disclosure of
	“BridgePoint® - Automation”
	to others is prohibited except by express agreement with
	Project Technology, Inc.
	Copyright ” 1992-1999
	Project Technology, Inc. and its licensors.
	7400 N. Oracle Road, Suite 365 Tucson, AZ 85704-6342 USA
	All rights reserved.
	The Database Management portion of this product is based on:
	ObjectStore®
	Copyright ” Object Design, Inc. 1988-1998
	All rights reserved. Patent Pending.
	The License Management portion of this product is based on:
	Elan License Manager
	Copyright ” Rainbow Technologies, Inc. 1998
	All rights reserved.
	All other products or services mentioned in this document are identified by the trademarks, servi...
	RESTRICTED RIGHTS LEGEND
	Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subp...
	Rights in Technical Data and Computer Software
	clause at 252.227-7013 (48 CFR, Ch.2).
	Contractors/manufacturers are
	Project Technology, Inc., 7400 N. Oracle Rd., Ste. 365, Tucson, AZ 85704-6342 USA
	Object Design, Inc., 25 Burlington Mall Road, Burlington, MA 01803 USA
	Rainbow Technologies, Inc. USA
	Version 4.0-1.3

	Documentation Roadmap
	BridgePoint - OOA
	BridgePoint - Automation
	BridgePoint - Tool Guide
	Table of Contents
	TASK Architecture Blueprint 1
	TASK SW Arch Implementation 121
	TASK
	Architecture Blueprint

	STEP 7

	Architecture Characterization
	7.1 Method
	Application Domain
	7.1.1 Implementation Technologies
	7.1.1.1 Programming Language:
	7.1.1.2 Operating System:
	7.1.1.3 Database:
	7.1.1.4 User Interface:
	7.1.1.5 Implemented Service Domains:

	7.1.2 Architectural Decisions
	7.1.2.1 Data Organization:
	7.1.2.2 Control Organization:
	7.1.2.3 Source Code Organization:
	STEP 8

	Architecture Design
	8.2 Method

	8.2.1 Subsystem ‘Subsystem’
	8.2.1.1 Object and Attribute Descriptions
	1. Domain (S_DOM)
	Domain.Dom_ID
	Domain.Name
	Domain.Descrip
	Domain.Full_Der
	Domain.Config_ID

	2. Subsystem (S_SS)
	Subsystem.SS_ID
	Subsystem.Name
	Subsystem.Descrip
	Subsystem.Prefix
	Subsystem.Num_Rng
	Subsystem.Dom_ID

	3. External Entity (S_EE)
	External Entity.EE_ID
	External Entity.Name
	External Entity.Descrip
	External Entity.Key_Lett
	External Entity.Dom_ID

	4. External Entity in Model (S_EEM)
	External Entity in Model.EEmod_ID
	External Entity in Model.EE_ID
	External Entity in Model.Modl_Typ
	External Entity in Model.SS_ID

	5. External Entity Data Item (S_EEDI)
	External Entity Data Item.EEdi_ID
	External Entity Data Item.EE_ID
	External Entity Data Item.Name
	External Entity Data Item.Descrip
	External Entity Data Item.DT_ID

	6. External Entity Event (S_EEEVT)
	External Entity Event.EEevt_ID
	External Entity Event.EE_ID
	External Entity Event.Numb
	External Entity Event.Mning
	External Entity Event.Are_KL_C
	External Entity Event.Cust_KL
	External Entity Event.Drv_Lbl
	External Entity Event.Descrip

	7. External Entity Event Data Item (S_EEEDI)
	External Entity Event Data Item.EEedi_ID
	External Entity Event Data Item.EE_ID
	External Entity Event Data Item.Name
	External Entity Event Data Item.Descrip
	External Entity Event Data Item.DT_ID

	8. External Entity Event Data (S_EEEDT)
	External Entity Event Data.EE_ID
	External Entity Event Data.EEevt_ID
	External Entity Event Data.EEedi_ID

	9. Data Type (S_DT)
	Data Type.DT_ID
	Data Type.Dom_ID
	Data Type.Name
	Data Type.Descrip

	10. Core Data Type (S_CDT)
	Core Data Type.DT_ID
	Core Data Type.Core_Typ

	11. User Data Type (S_UDT)
	User Data Type.DT_ID
	User Data Type.CDT_ID
	User Data Type.User_Typ

	12. Bridge (S_BRG)
	Bridge.Brg_ID
	Bridge.EE_ID
	Bridge.Name
	Bridge.Descrip
	Bridge.Brg_Typ
	Bridge.DT_ID

	13. Bridge Parameter (S_BPARM)
	Bridge Parameter.BParm_ID
	Bridge Parameter.Brg_ID
	Bridge Parameter.Name
	Bridge Parameter.DT_ID

	8.2.1.2 Relationship Descriptions
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	R12
	R13
	R14
	R15
	R16
	R17
	R18
	R19
	R20
	R21
	R22

	8.2.2 Subsystem ‘Object’
	8.2.2.1 Object and Attribute Descriptions
	101. Object (O_OBJ)
	Object.Obj_ID
	Object.Name
	Object.Numb
	Object.Key_Lett
	Object.Descrip
	Object.SS_ID

	102. Imported Object (O_IOBJ)
	Imported Object.IObj_ID
	Imported Object.Obj_ID
	Imported Object.Modl_Typ
	Imported Object.SS_ID

	103. Attribute (O_ATTR)
	Attribute.Attr_ID
	Attribute.Obj_ID
	Attribute.PAttr_ID
	Attribute.Name
	Attribute.Descrip
	Attribute.Prefix
	Attribute.Root_Nam
	Attribute.Pfx_Mode
	Attribute.DT_ID

	104. Object Identifier (O_ID)
	Object Identifier.Oid_ID
	Object Identifier.Obj_ID

	105. Object Identifier Attribute (O_OIDA)
	Object Identifier Attribute.Attr_ID
	Object Identifier Attribute.Obj_ID
	Object Identifier Attribute.Oid_ID

	106. Base Attribute (O_BATTR)
	Base Attribute.Attr_ID
	Base Attribute.Obj_ID

	107. Derived Base Attribute (O_DBATTR)
	Derived Base Attribute.Attr_ID
	Derived Base Attribute.Obj_ID

	108. New Base Attribute (O_NBATTR)
	New Base Attribute.Attr_ID
	New Base Attribute.Obj_ID

	109. Referential Attribute (O_RATTR)
	Referential Attribute.Attr_ID
	Referential Attribute.Obj_ID
	Referential Attribute.BAttr_ID
	Referential Attribute.BObj_ID
	Referential Attribute.Ref_Mode

	110. Attribute Reference in Object (O_REF)
	Attribute Reference in Object.Obj_ID
	Attribute Reference in Object.RObj_ID
	Attribute Reference in Object.ROid_ID
	Attribute Reference in Object.RAttr_ID
	Attribute Reference in Object.Rel_ID
	Attribute Reference in Object.OIR_ID
	Attribute Reference in Object.ROIR_ID
	Attribute Reference in Object.Attr_ID
	Attribute Reference in Object.ARef_ID
	Attribute Reference in Object.PARef_ID
	Attribute Reference in Object.Is_Cstrd
	Attribute Reference in Object.Descrip

	111. Referred To Identifier Attribute (O_RTIDA)
	Referred To Identifier Attribute.Attr_ID
	Referred To Identifier Attribute.Obj_ID
	Referred To Identifier Attribute.Oid_ID
	Referred To Identifier Attribute.Rel_ID
	Referred To Identifier Attribute.OIR_ID

	112. Transformer (O_TFR)
	Transformer.Tfr_ID
	Transformer.Obj_ID
	Transformer.Name
	Transformer.Descrip
	Transformer.DT_ID

	113. Transformer Parameter (O_TPARM)
	Transformer Parameter.TParm_ID
	Transformer Parameter.Tfr_ID
	Transformer Parameter.Name
	Transformer Parameter.DT_ID

	8.2.2.2 Relationship Descriptions
	R101
	R102
	R103
	R104
	R105
	R106
	R107
	R108
	R109
	R110
	R111
	R112
	R113
	R114
	R115
	R116
	R117
	R118

	8.2.3 Subsystem ‘Relationship’
	8.2.3.1 Object and Attribute Descriptions
	201. Relationship (R_REL)
	Relationship.Rel_ID
	Relationship.Numb
	Relationship.Descrip
	Relationship.SS_ID

	202. Object in Relationship (R_OIR)
	Object in Relationship.Obj_ID
	Object in Relationship.Rel_ID
	Object in Relationship.OIR_ID
	AObject in Relationship.IObj_ID

	203. Referred To Object in Rel (R_RTO)
	Referred To Object in Rel.Obj_ID
	Referred To Object in Rel.Rel_ID
	Referred To Object in Rel.OIR_ID
	Referred To Object in Rel.Oid_ID

	204. Referring Object in Rel (R_RGO)
	Referring Object in Rel.Obj_ID
	Referring Object in Rel.Rel_ID
	Referring Object in Rel.OIR_ID

	205. Simple Relationship (R_SIMP)
	Simple Relationship.Rel_ID

	206. Object As Simple Participant (R_PART)
	Object As Simple Participant.Obj_ID
	Object As Simple Participant.Rel_ID
	Object As Simple Participant.OIR_ID
	Object As Simple Participant.Mult
	Object As Simple Participant.Cond
	Object As Simple Participant.Txt_Phrs

	207.Object As Simple Formalizer (R_FORM)
	Object As Simple Formalizer.Obj_ID
	Object As Simple Formalizer.Rel_ID
	Object As Simple Formalizer.OIR_ID
	Object As Simple Formalizer.Mult
	Object As Simple Formalizer.Cond
	Object As Simple Formalizer.Txt_Phrs

	208. Associative Relationship (R_ASSOC)
	Associative Relationship.Rel_ID

	209. Object As Associated One Side (R_AONE)
	Object As Associated One Side.Obj_ID
	Object As Associated One Side.Rel_ID
	Object As Associated One Side.OIR_ID
	Object As Associated One Side.Mult
	Object As Associated One Side.Cond
	Object As Associated One Side.Txt_Phrs

	210. Object As Associated Other Side (R_AOTH)
	Object As Associated Other Side.Obj_ID
	Object As Associated Other Side.Rel_ID
	Object As Associated Other Side.OIR_ID
	Object As Associated Other Side.Mult
	Object As Associated Other Side.Cond
	Object As Associated Other Side.Txt_Phrs

	211. Object As Associator (R_ASSR)
	Object As Associator.Obj_ID
	Object As Associator.Rel_ID
	Object As Associator.OIR_ID
	Object As Associator.Mult

	212. Subtype/Supertype Relationship (R_SUBSUP)
	Subtype/Supertype Relationship.Rel_ID

	213. Object As Supertype (R_SUPER)
	Object As Supertype.Obj_ID
	Object As Supertype.Rel_ID
	Object As Supertype.OIR_ID

	214. Object As Subtype (R_SUB)
	Object As Subtype.Obj_ID
	Object As Subtype.Rel_ID
	Object As Subtype.OIR_ID

	215. Composition Relationship (R_COMP)
	Composition Relationship.Rel_ID
	Composition Relationship.Rel_Chn

	216. Object As Composition One Side (R_CONE)
	Object As Composition One Side.Obj_ID
	Object As Composition One Side.Rel_ID
	Object As Composition One Side.OIR_ID
	Object As Composition One Side.Mult
	Object As Composition One Side.Cond
	Object As Composition One Side.Txt_Phrs

	217. Object As Composition Other Side (R_COTH)
	Object As Composition Other Side.Obj_ID
	Object As Composition Other Side.Rel_ID
	Object As Composition Other Side.OIR_ID
	Object As Composition Other Side.Mult
	Object As Composition Other Side.Cond
	Object As Composition Other Side.Txt_Phrs

	8.2.3.2 Relationship Descriptions
	R201
	R202
	R203
	R204
	R205
	R206
	R207
	R208
	R209
	R210
	R211
	R212
	R213
	R214
	R215

	8.2.4 Subsystem ‘Communication & Access’
	8.2.4.1 Object and Attribute Descriptions
	401. Communication Path (CA_COMM)
	Communication Path.CPath_ID
	Communication Path.SS_ID

	402. EE to SM Comm Path (CA_EESMC)
	EE to SM Comm Path.CPath_ID
	EE to SM Comm Path.EEmod_ID
	EE to SM Comm Path.EE_ID
	EE to SM Comm Path.SM_ID

	403. SM to SM Comm Path (CA_SMSMC)
	SM to SM Comm Path.CPath_ID
	SM to SM Comm Path.OSM_ID
	SM to SM Comm Path.DSM_ID
	SM to SM Comm Path.OIObj_ID
	SM to SM Comm Path.DIObj_ID

	404. SM to EE Comm Path (CA_SMEEC)
	SM to EE Comm Path.CPath_ID
	SM to EE Comm Path.SM_ID
	SM to EE Comm Path.EE_ID
	SM to EE Comm Path.EEmod_ID

	405. EE to SM Event Comm (CA_EESME)
	EE to SM Event Comm.CPath_ID
	EE to SM Event Comm.SM_ID
	EE to SM Event Comm.SMevt_ID

	406.SM to SM Event Comm (CA_SMSME)
	SM to SM Event Comm.CPath_ID
	SM to SM Event Comm.SM_ID
	SM to SM Event Comm.SMevt_ID

	407. SM to EE Event Comm (CA_SMEEE)
	SM to EE Event Comm.CPath_ID
	SM to EE Event Comm.EE_ID
	SM to EE Event Comm.EEevt_ID

	408. Access Path (CA_ACC)
	Access Path.APath_ID
	Access Path.SS_ID
	Access Path.SM_ID
	Access Path.IObj_ID

	409. SM to OBJ Access Path (CA_SMOA)
	SM to OBJ Access Path.APath_ID
	SM to OBJ Access Path.Obj_ID
	SM to OBJ Access Path.IObj_ID

	410. SM to EE Access Path (CA_SMEEA)
	SM to EE Access Path.APath_ID
	SM to EE Access Path.EE_ID
	SM to EE Access Path.EEmod_ID

	411. SM to OBJ Attribute Access (CA_SMOAA)
	ASM to OBJ Attribute Access.APath_ID
	SM to OBJ Attribute Access.Attr_ID
	SM to OBJ Attribute Access.Obj_ID

	412. SM to EE Data Item Access (CA_SMEED)
	SM to EE Data Item Access.APath_ID
	SM to EE Data Item Access.EEdi_ID
	SM to EE Data Item Access.EE_ID

	8.2.4.2 Relationship Descriptions
	R401
	R402
	R403
	R404
	R405
	R406
	R407
	R408
	R409
	R410
	R411
	R412
	R413
	R414
	R415
	R416
	R417
	R418
	R419
	R420
	R421
	R422
	R423
	R424
	R425

	8.2.5 Subsystem ‘State Model’
	8.2.5.1 Object and Attribute Descriptions
	501. State Model (SM_SM)
	State Model.SM_ID
	State Model.Descrip
	State Model.Config_ID

	502. State Model State (SM_STATE)
	State Model State.SMstt_ID
	State Model State.SM_ID
	State Model State.SMspd_ID
	State Model State.Name
	State Model State.Numb
	State Model State.Final

	503. State Model Event (SM_EVT)
	State Model Event.SMevt_ID
	State Model Event.SM_ID
	State Model Event.SMspd_ID
	State Model Event.Numb
	State Model Event.Mning
	State Model Event.Are_KL_C
	State Model Event.Cust_KL
	State Model Event.Drv_Lbl
	State Model Event.Descrip

	504. State Event Matrix Entry (SM_SEME)
	State Event Matrix Entry.SMstt_ID
	State Event Matrix Entry.SMevt_ID
	State Event Matrix Entry.SM_ID
	State Event Matrix Entry.SMspd_ID

	505. New State Transition (SM_NSTXN)
	New State Transition.Trans_ID
	New State Transition.SM_ID
	New State Transition.SMstt_ID
	New State Transition.SMevt_ID
	New State Transition.SMspd_ID

	506. Event Ignored (SM_EIGN)
	Event Ignored.SMstt_ID
	Event Ignored.SMevt_ID
	Event Ignored.SM_ID
	Event Ignored.SMspd_ID
	Event Ignored.Descrip

	507. Cant Happen (SM_CH)
	Cant Happen.SMstt_ID
	Cant Happen.SMevt_ID
	Cant Happen.SM_ID
	Cant Happen.SMspd_ID
	Cant Happen.Descrip

	508. Transition (SM_TXN)
	Transition.Trans_ID
	Transition.SM_ID
	Transition.SMstt_ID
	Transition.SMspd_ID

	509. No Event Transition (SM_NETXN)
	No Event Transition.Trans_ID
	No Event Transition.SM_ID
	No Event Transition.SMstt_ID
	No Event Transition.SMspd_ID

	510. Creation Transition (SM_CRTXN)
	Creation Transition.Trans_ID
	Creation Transition.SM_ID
	Creation Transition.SMevt_ID
	Creation Transition.SMspd_ID

	511. Moore State Model (SM_MOORE)
	Moore State Model.SM_ID

	512. Mealy State Model (SM_MEALY)
	Mealy State Model.SM_ID

	513.Moore Action Home (SM_MOAH)
	Moore Action Home.Act_ID
	Moore Action Home.SM_ID
	Moore Action Home.SMstt_ID

	514. Mealy Action Home (SM_MEAH)
	Mealy Action Home.Act_ID
	Mealy Action Home.SM_ID
	Mealy Action Home.Trans_ID

	515.Action Home (SM_AH)
	Action Home.Act_ID
	Action Home.SM_ID

	516. Action (SM_ACT)
	Action.Act_ID
	Action.SM_ID
	Action.Suc_Pars
	Action.Descrip

	517. State Model Event Data Item (SM_EVTDI)
	State Model Event Data Item.SMedi_ID
	State Model Event Data Item.SM_ID
	State Model Event Data Item.Name
	State Model Event Data Item.Descrip
	State Model Event Data Item.DT_ID

	518. Event Supplemental Data (SM_SUPDT)
	Event Supplemental Data.SMspd_ID
	Event Supplemental Data.SM_ID

	519. Supplemental Data Items (SM_SDI)
	Supplemental Data Items.SMedi_ID
	Supplemental Data Items.SMspd_ID
	Supplemental Data Items.SM_ID

	520. Instance State Model (SM_ISM)
	Instance State Model.SM_ID
	Instance State Model.Obj_ID

	521. Assigner State Model (SM_ASM)
	Assigner State Model.SM_ID
	Assigner State Model.Obj_ID

	8.2.5.2 Relationship Descriptions
	R501
	R502
	R503
	R504
	R505
	R506
	R507
	R508
	R509
	R510
	R511
	R512
	R513
	R514
	R515
	R516
	R517
	R518
	R519
	R520
	R521
	R522
	R523
	R524
	TASK
	SW Arch Implementation
	STEP 9

	Develop Structural Archetypes
	9.1 Method
	Figure 9.1.0.1. File Generation
	9.1.1 General Language Attributes
	1. Execution is sequential.
	2. All transient variables are implicitly declared upon the first assignment - any subsequent ass...
	3. A stack execution model is assumed - variables are pushed on the stack as they are implicitly ...
	4. White space is treated as a token delimiter.
	5. Statements are intended to be readable as a sentence so keywords are used in groups to provide...
	6. Key words may be all lower-case, all upper-case, or first character uppercase and all other ch...
	7. Variables must adhere to the constrained names:
	8. Objects in the OOA of OOA are specified by using the object keyletters.
	9.1.1.1 Syntax Notation

	9.1.2 Literal Text
	TABLE 9.1 Summary of Special Characters in Literal Text Lines

	9.1.3 Data Access Control Statements
	9.1.3.1 Instance Selection
	.Select one <inst_ref_var> related by <inst_chain>
	[where (<condition>)]
	.Select any <inst_ref_var> related by <inst_chain>
	[where (<condition>)]
	.Select many <inst_ref_set_var> related by <inst_chain>
	[where (<condition>)]
	.Select any <inst_ref_var> from instances of
	<obj_keyletters> [where (<condition>)]
	.Select many <inst_ref_set_var> from instances of
	<obj_keyletters> [where (<condition>)]
	9.1.3.2 Instance Chains

	R<number>
	or
	R<number>.<direction>
	9.1.3.3 Chain Multiplicity & Conditionality
	9.1.3.4 Where Clause

	.Select many attr_set from instances of O_ATTR
	where (selected.name == "Id")
	.Select many attr_set from instances of O_ATTR
	where ("${selected ->O_OBJ[R102]}.key_lett" == "DOG")
	9.1.3.5 Instance Set Iteration

	.For each <inst_ref_var> in <inst_ref_set_var>
	<stmt_blck>
	.End for
	.Break for
	9.1.3.6 While
	9.1.3.7 Object Attribute Access

	9.1.4 Transformer Control Statements
	9.1.4.1 Assign Statement
	TABLE 9.2 Compatible Assignment Data Types

	9.1.5 Tester Control Statements
	9.1.6 Function Control Statements
	TABLE 9.3 Actual Parameter Forms
	9.1.6.1 Fragment Attributes

	9.1.7 File Control Statements
	9.1.7.1 Emitting Generated Output
	9.1.7.2 Comments
	9.1.7.3 Include
	9.1.7.4 Handling Errors

	9.1.8 Rvalues
	9.1.8.1 Literals as Rvalues
	TABLE 9.4 Literal Specification for Core Data Types

	9.1.8.2 Quoted Strings
	9.1.8.3 Variables as Rvalues

	9.1.9 Expressions
	9.1.9.1 Simple Expressions
	9.1.9.2 Compound Expressions
	9.1.9.3 Operations
	TABLE 9.5 Core Unary Operators
	TABLE 9.6 Core Binary Operators
	TABLE 9.7 Core Unary Operations
	TABLE 9.8 Core Binary Operations
	TABLE 9.9 Set Operations

	9.1.10 Substitution Variables
	9.1.10.1 Format
	TABLE 9.10 Substitution Variable Format Characters

	9.1.10.2 Parse Keyword
	9.1.10.3 Information Substitution Variables

	9.2 Automation
	9.2.1 Overview
	Figure 9.2.1.1. Archetype Interpretation Architecture

	9.2.2 Running gen_import
	9.2.3 Running gen_file
	9.2.4 Using Makefiles
	STEP 10

	Develop Action Archetypes
	10.1 Method
	Figure 10.1.0.1. Action Generation Process
	1. Script Generation - break Action Language into fundamental components - fragments - from the i...
	2. Action Source Code Generation - plug in user definitions for each fragment - will generate sma...

	10.1.1 Invoking Fragment Generation
	10.1.2 Fragment Generation Script
	10.1.3 Fragment Generation Functions
	10.1.3.1 Action Generator Functions
	TABLE 10.11 Action Generator Functions

	10.1.3.2 Statement Block Generator Functions
	TABLE 10.12 Statement Block Generator Functions

	10.1.3.3 Statement Generator Functions
	TABLE 10.13 Statement Generator Functions

	10.1.3.4 Rvalue Generator Functions
	TABLE 10.14 Rvalue Generator Functions

	10.1.3.5 Instance Chain Generator Functions
	TABLE 10.15 Instance Chain Generator Functions

	10.1.3.6 Parameter List Generator Functions
	TABLE 10.16 Parameter List Generator Functions

	10.1.3.7 Variable Generator Functions
	TABLE 10.17 Variable Generator Functions

	10.2 Automation
	10.2.1 Overview
	Figure 10.2.1.1. Archetype Interpretation Architecture

	.SELECT obj_inst
	.POPULATE obj_inst
	// This File is generated
	//
	// WARNING:
	// DO NOT EDIT!!
	//
	class ${obj_inst.name}
	{
	.ITERATE attr_inst
	int get_${attr_inst.name} ();
	void set_${attr_inst.name} ();
	.END_ITERATE
	};
	Figure 10.2.1.2. Action Source Code Generation.
	Figure 10.2.1.3. Action Generation Process

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

