
Creating ObjectSwitch Applications
ObjectSwitch 4.0.1

© 2002, 2001 Kabira Technologies Inc. All rights reserved.

Without written consent of Kabira Technologies Inc, except as allowed by license, this document may not
be reproduced, transmitted, translated, or stored in a retrieval system in any form or by any means, whether
electronic, manual, mechanical, or otherwise.

Trademarks

ObjectSwitch is a registered trademark of Kabira Technologies Inc.
Rational Rose, Rose 98i, and Rose 2000 are registered trademarks of Rational Software Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
Windows NT is a registered trademark of Microsoft Corporation.
Informix is a registered trademark of Informix Software, Inc.
Oracle is a registered trademark of Oracle Corporation
Sybase is a registered trademark of Sybase, Inc.
Any other trademarks are the property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
This product includes software written by the PHP Development Team.

Feedback

This document is intended to address your needs. If you have any suggestions for how it might be
improved, or if you have problems with this or any other ObjectSwitch documentation, please send e-mail to
pubs@kabira.com. Thank you!

Feedback about this document should include the reference DSE-DG-16.
Created on: June 17, 2002

i

About this book

This book tells you how to develop ObjectSwitch applications. It
provides introductory and reference materials, and some guidelines on
how to model effectively. Before reading this book, you should already
be familiar with object-oriented software concepts. The book is mainly
for developers of ObjectSwitch applications, and consists of the
following sections.

Introduction A more detailed overview of this book, and the steps and
tools that you use to develop ObjectSwitch applications. Introduces the
sample application and some conventions used in this document.

Building components Describes the environment and tools that you
use to build ObjectSwitch applications.

IDLos and Action language These two chapters describe the static and
dynamic modeling languages for building ObjectSwitch applications.

This book is part of a series of ObjectSwitch manuals. Refer also to the
following manuals:

• Advanced ObjectSwitch Modeling
• Deploying and Managing ObjectSwitch Applications

For more information about using adapters in your applications, see the
documentation for each individual adapter factory.

ii

iii

Introduction 1
ObjectSwitch components, 1
UML and IDLos, 4
Terminology, 5

Creating ObjectSwitch models 7

Models 8
Object oriented, 10
Component oriented, 10
Richly typed, 10
Adaptable, 11
Importing and exporting IDLos, 11
An example, 12
Entities 15
Visual Design Center, 17
IDLos, 18
Entity properties, 19
Local entities 21
Visual Design Center, 22
IDLos, 22
Attribute 23
Visual Design Center, 24
IDLos, 25
Read-only attributes, 26
Operation 26
Visual Design Center, 27
IDLos, 30
Operation properties, 31
Key 36
Visual Design Center, 37
IDLos, 38
Relationship 38
Visual Design Center, 39

Contents

iv

IDLos, 40
Associative relationships, 41
Entity trigger 42
Visual Design Center, 45
IDLos, 45
Attribute trigger 46
Visual Design Center, 47
IDLos, 47
Role trigger 48
Visual Design Center, 49
IDLos, 51
Module 53
Visual Design Center, 53
IDLos, 54
Package 54
Visual Design Center, 56
IDLos, 56
Example, 57
Package properties, 58
Interface 59
Visual Design Center, 63
IDLos, 64
Interface properties, 64
Local Interface 66
Visual Design Center, 67
IDLos, 68
State machine 68
Visual Design Center, 69
IDLos, 70
State 71
Visual Design Center, 72
IDLos, 73
Signal 73
Transition 74
Inheritance 75
 Entity inheritance, 75
Operations, 79
Interface inheritance, 86
Namespaces 88
Modules, 89
Model elements defining namespaces, 89

v

Scoped names, 89
Ordering and forward declarations in IDLos, 91
A big example 93
Visual Design Center, 93
IDLos, 95

Action language 99

Overview 99
Why is there an action language?, 99
Action language, 100
What is action language like?, 100
Some basic features of the action language 100
Variables, 101
Manipulating data, 104
Implicit conversion between string and numeric types, 108
Name spaces, 110
Data types, 110
Control structures 110
Loops, 110
Branches, 111
Manipulating objects 111
Creating objects, 112
Deleting objects, 112
Singletons, 112
Object references, 113
Operation and signal parameters, 114
Accessing operations and attributes, 115
Handling relationships, 115

Building ObjectSwitch components 119

The ObjectSwitch component 120
What is a component specification?, 121
Defining a component specification, 121
Graphics vs Text to build a component specification, 123
Creating a project 123
Project properties, 125
Working with model sources 128
Defining a component 129
Component properties, 130
Putting packages in a component 131
Importing another component 133

vi

Adding adapters 135
Adapter properties, 136
Adding model elements to adapters 136
Model element properties, 138
Putting relationships and roles into adapters, 138
Putting attributes into adapters, 138
Saving a component specification 138
Building the component 139
What can you build?, 139
What is auditing?, 141
What you get after you build, 141

Accessing ObjectSwitch through PHP 143

Overview 145
Data types 146
Basic types, 146
Boolean, 147
Enum, 147
Object references, 147
Arrays and sequences, 147
Unsupported types, 148
PHP script language 149
PHP Syntax, 149
Using the extension, 149
Error handling, 150
PHP4 Extension 151
os_connect 152
Error Conditions, 152
os_create 153
Example, 153
Error Conditions, 154
os_delete 155
os_disconnect 156
os_extent 157
os_get_attr 159
os_invoke 161
os_relate 164
os_role 165
os_set_attr 167
os_unrelate 169

vii

Web Server—Apache 170
Command Line Utility171

Usage, 171
Example, 171
Execute PHP in action language 172
Transactions 175
Web browser or command line transactionality, 175
Action language callout transactionality, 176
A PHP example 177
The model, 178
Example scripts, 180

Lexical and syntactic fundamentals 185
Character set, 185
Tokens, 186
White space, 189
Comments, 189
Preprocessing directives, 190

ObjectSwitch types 191

any 194
Semantics, 194
Visual Design Center syntax, 194
IDLos syntax, 195
Action language syntax, 196
Example, 196
General Information, 196
array 198
Semantics, 198
Visual Design Center syntax, 198
IDLos syntax, 198
Action language syntax, 198
Example, 198
General Information, 198
boolean 199
Semantics, 199
Visual Design Center syntax, 199
IDLos syntax, 199
Action language syntax, 200
Example, 200
bounded sequence 201
Semantics, 201

viii

Visual Design Center syntax, 201
IDLos syntax, 201
Action language syntax, 201
Example, 201
General Information, 201
bounded string 202
Semantics, 202
Visual Design Center syntax, 202
IDLos syntax, 202
Action language syntax, 202
Example, 202
bounded wstring 203
Semantics, 203
Visual Design Center syntax, 203
IDLos syntax, 203
Action language syntax, 203
Example, 203
char 204
Semantics, 204
Visual Design Center syntax, 204
IDLos syntax, 204
Action language syntax, 205
Example, 205
const 206
Semantics, 206
Visual Design Center syntax, 206
IDLos syntax, 206
Example, 207
General Information, 207
context 208
Semantics, 208
double 209
Semantics, 209
Visual Design Center syntax, 209
IDLos syntax, 209
Action language syntax, 210
Example, 210
entity 211
Semantics, 211
Visual Design Center syntax, 211
IDLos syntax, 211
Example, 211
General Information, 212

ix

enum 213
Semantics, 213
Visual Design Center syntax, 213
IDLos syntax, 213
Example, 213
General Information, 213
exception 214
Semantics, 214
Visual Design Center syntax, 214
IDLos syntax, 214
Example, 214
General Information, 214
extern 216
Semantics, 216
Visual Design Center syntax, 216
Action language syntax, 216
Example, 216
fixed 217
Semantics, 217
float 218
Semantics, 218
Visual Design Center syntax, 218
IDLos syntax, 218
Action language syntax, 218
Example, 219
interface 220
Semantics, 220
Visual Design Center syntax, 220
IDLos syntax, 220
Example, 221
General Information, 221
long 222
Semantics, 222
Visual Design Center syntax, 222
IDLos syntax, 222
Action language syntax, 222
Example, 223
long double 224
Semantics, 224
long long 225
Semantics, 225
Visual Design Center syntax, 225

x

IDLos syntax, 225
Action language syntax, 226
Example, 226
native 227
Semantics, 227
Visual Design Center syntax, 227
Object 228
Semantics, 228
Visual Design Center syntax, 228
IDLos syntax, 228
Action language syntax, 228
Example, 228
General Information, 229
octet 230
Semantics, 230
Visual Design Center syntax, 230
IDLos syntax, 230
Action language syntax, 230
Example, 231
pipe 232
Semantics, 232
sequence 233
Semantics, 233
Visual Design Center syntax, 233
IDLos syntax, 233
Example, 233
General Information, 233
short 234
Semantics, 234
Visual Design Center syntax, 234
IDLos syntax, 234
Action language syntax, 235
Example, 235
string 236
Semantics, 236
Visual Design Center syntax, 236
IDLos syntax, 236
Action language syntax, 236
Example, 236
General Information, 236
struct 237
Semantics, 237

xi

Visual Design Center syntax, 237
IDLos syntax, 237
Action language syntax, 237
Example, 237
General Information, 238
typedef 239
Semantics, 239
Visual Design Center syntax, 239
IDLos syntax, 239
Example, 239
General Information, 239
union 240
Semantics, 240
Visual Design Center syntax, 240
IDLos syntax, 240
Action language syntax, 240
Example, 241
General Information, 242
unsigned long 244
Semantics, 244
Visual Design Center syntax, 244
IDLos syntax, 244
Action language syntax, 244
Example, 245
unsigned long long 246
Semantics, 246
Visual Design Center syntax, 246
IDLos syntax, 246
Action language syntax, 247
Example, 247
unsigned short 248
Semantics, 248
Visual Design Center syntax, 248
IDLos syntax, 248
Action language syntax, 249
Example, 249
void 250
Semantics, 250
Visual Design Center syntax, 250
IDLos syntax, 250
Example, 250
wchar 251
Semantics, 251

xii

Visual Design Center syntax, 251
IDLos syntax, 251
Action language syntax, 251
Example, 252
wstring 253
Semantics, 253
Visual Design Center syntax, 253
IDLos syntax, 253
Action language syntax, 254
Example, 254

IDLos Reference 255

Files and engines in IDLos 257
Files, 257
Engines, 257
action 259
attribute 260
const 261
enum 263
entity 264
exception 266
expose 267
interface 268
key 270
local entity 272
module 274
operation 275
package 277
relationship / role 279
signal 281
stateset 282
struct 283
transition 284
trigger 285
typedef 287
Complete IDLos grammar 289

Action language reference 297

xiii

About the notation, 297
Some common elements, 298
break 300
cardinality 301
continue 303
create 304
create singleton 306
declare 308
delete 310
empty 311
Exceptions 313
extern 317
for 318
for ... in 320
if
else
else if 322
in 324
isnull 325
relate 326
return 328
select 330
select...using 332
Syntax, 332
Description, 332
Warnings, 332
Examples, 332
Locking examples, 333
self 334
spawn 335
Transactions 341
IDLos Constraints, 341
Types 343
unrelate 345
while 347
Complete action language grammar 349

Build specification reference 355

xiv

adapter 357
component 358
group 359
import 360
Macros 361
Properties 363
source 366
swbuild 367
Complete build grammar 368
Complete build specification example 370

PHP reference 375
About the notation, 375
os_connect 376
Error Conditions, 376
os_create 377
Example, 377
Error Conditions, 378
os_delete 379
os_disconnect 380
os_extent 381
os_get_attr 383
os_invoke 385
os_relate 388
os_role 389
os_set_attr 391
os_unrelate 394

Part One: Creating
ObjectSwitch
Applications

1

1 Introduction

This chapter introduces tools and terminology used in modeling and
building an ObjectSwitch component. ObjectSwitch components are
built directly from object-oriented models without a traditional coding
stage. This makes them quick to develop and easy to maintain.

In this chapter you are introduced to:

• modeling and building components
• the terminology

Before reading this book, you should already be familiar with the
concepts presented in the Overview of ObjectSwitch. You should also be
familiar with object-oriented design concepts.

ObjectSwitch components

An ObjectSwitch component is an executable model that can be
deployed and reused. When you build a component, everything needed
for deployment on an ObjectSwitch node and for reuse in another
component is wrapped into a single file.

Components let you create modular applications. You can model a
related set of types and services in a single component, then access
those types and services from any number of components. In addition,
you can wrap interfaces to non-ObjectSwitch services—for example,
applications implemented in Java or accessed through CORBA—into
components, and reuse those components in other components.

2

Chapter 1: Introduction

Although each component is deployed separately, you don’t need to
think about deployment when modeling a component. Dependencies
between components are specified at build time, and are stored with
the dependent component. When you load a dependent component on
an ObjectSwitch node, the components upon which it depends are
loaded automatically.

To build an ObjectSwitch component you will:

• model your application logic in IDLos or UML with Action Language
• create a component specification describing how to build the model
• build the component using the Design Center server

Modeling a component You model ObjectSwitch components using
one of two methods:

• graphical modeling using Rational Rose
• a text editor such as vi

In Rational Rose you model using the Unified Modeling Language
(UML). Using a text editor, you model using the ObjectSwitch interface
definition language, IDLos. IDLos is a superset of IDL with entities and
relationships added, and is UML compliant. You can think of it as a
textual version of UML.

The two methods of creating component models are equivalent,
allowing for round-trip development. Models can be created or
modified textually, then imported into Rational Rose to create a
graphical representation of the model that you can work with using
Rose’s graphical tools. Models that you create or modify in Rose can be
exported to IDLos, then modified with a text editor.

Component specification The description of how to build an
ObjectSwitch component is called a component specification. You use
the same tools to create a component specification that you use to
model. In Rational Rose you use drop-down menus and drag-and-drop
icons to create a component specification. Textual component
specifications are written in a text editor using a simple build

Chapter 1: Introduction

3

specification language. The two methods are equivalent. A component
specification created in Rational Rose can be exported to create a
textual component specification.

When specifying how you want the component to be built, you can
import other components upon which your new component depends.
You need to import any component that defines types or operations
used in the component you are building.

Building a component Once your model and component specification
are complete, you can build the component. Again, you can do this from
within Rational Rose or textually at the command line. With either
method, the component specifications are sent to an ObjectSwitch
Design Center server to generate the deployable and reusable
component.

The components are built on the platform where the Design Center
server is running. You can model, specify, and build a component while
working on one platform that will be deployed on another, simply by
connecting to a Design Center server that is running on the
deployment platform.

4

Chapter 1: Introduction

UML and IDLos

Throughout these books, models are expressed using both UML and
IDLos. Figure 1 summarizes some basic elements of a UML class
diagram.

Figure 1 shows four entities:

• zero or more Vehicles are owned by exactly one Owner. In IDLos this
relationship would be represented as:

 relationship ownership
 {
 role Owner owns 0..* Vehicle;
 };

• Vehicle has two attributes and an operation. The vehicle entity in
IDLos would appear:

 entity Vehicle
 {
 attribute short year;
 attribute VehicleID ID;
 void transfer(in Owner newOwner);
 };

Figure 1: Basic
features of the UML

Owner

name:string

<<Entity>>

vehicle

year: short

ID: vehicleID

transfer(newOwner)

<<Entity>>

1..1

0..* ownership

belongs to

owns

Truck

<<Entity>>

Car

<<Entity>> axles: short

rating: short

Chapter 1: Introduction

5

• Car and Truck are two kinds of Vehicle, and Truck has two additional
attributes beyond those inherited from Vehicle.

There are many good books on UML; this manual does not attempt to
teach the notation. The UML chapter in Advanced ObjectSwitch
Modeling describes in detail how IDLos is represented in UML.

Terminology

Object-oriented analysis and design uses a number of different terms to
represent similar concepts, varying from one methodology to another.
ObjectSwitch draws on a number of different traditions, so it is
necessary to clarify the terminology that we use.

Term Meaning

Attribute Is a piece of data defined as part of an entity. Some
traditions refer to this as a data member.

Component The Design Center builds your application into one
or more components, each containing one or more
engines. You use the Engine Control Center to
deploy a component on an ObjectSwitch node.

Engine A single executable process. In the Design Center,
you map your application model onto one or more
engines, and then the Design Center builds compo-
nents containing those engines. When you deploy a
component, the Engine Control Center installs its
engines onto an ObjectSwitch node.

Entity An uninstantiated object. Other methodologies may
refer to this as a class or as an object.

Event A data structure used to communicate information
between objects. Events may be synchronous or
asynchronous.

Interface Indicates what part of an entity is exposed outside of
a package. An entity may have many interfaces, but
each interface may have only one entity. Other tradi-
tions have a broader definition.

Node A managed area of shared memory that contains
object data, the Event Distribution Bus, and other
data structures.

6

Chapter 1: Introduction

Object An instance of an entity.

Operation Is an executable part of an entity, known in other tra-
ditions as a member function or as a method.

Signal A message that causes a state transition in the state
machine of an object. Known in some traditions as an
event.

Supertype/subtype Represents inheritance (also called generalization). If
some entity B inherits from another entity A, then A
is the supertype of B and B is a subtype of A. Other
traditions may refer to this as parent class and child
class, or as base class and derived class.

Term Meaning

The next chapter describes how you create ObjectSwitch models in graphics or text.

7

2 Creating ObjectSwitch models

This chapter describes how you model in ObjectSwitch. It introduces each
ObjectSwitch modeling concept and shows how you use it to create
ObjectSwitch models.

ObjectSwitch lets you choose between visual and textual modeling, at any
stage. It provides you with modeling constructs, such as entities, attributes,
operations, packages, that you can use in their visual or textual form to
create your models.

The Unified Modeling Language is used to represent ObjectSwitch models
visually. IDLos, an IDL-based modeling language, provides the textual
equivalent. This chapter introduces these modeling concepts. For more
detailed reference material, refer to the following:

Chapter 6 explains the lexical rules of ObjectSwitch models

Chapter 7 describes the ObjectSwitch type system

Chapter 8 provides a detailed IDLos language reference

8

Chapter 2: Creating ObjectSwitch models
Models

After a general overview in “Models” this chapter introduces the following
ObjectSwitch modeling constructs:

• Entities

• Local entities

• Attribute

• Key

• Operation

• Entity trigger

• Attribute trigger

• Role trigger

• Relationship

• Module

• Package

• Interface

• Local Interface

The section “State machine” shows you how to model finite state machines,
and you will find a separate section covering each state machine construct:

• State

• Signal

• Transition

The final sections of this chapter cover:

• Inheritance

• Namespaces

• A big example

Models

ObjectSwitch applications are defined in terms of object models. Models can
be expressed graphically in the Unified Modeling Language (UML) or
textually in the IDLos modeling language; the two forms are fully
equivalent.

Chapter 2: Creating ObjectSwitch models
Models

9

You create UML models in the ObjectSwitch Visual Design Center. The
Visual Design Center also lets you convert between the visual and textual
representations by importing or exporting IDLos. You can also create
IDLos models using an ordinary text editor.

Consider a UML model fragment in the Visual Design Center, as shown in
Figure 2, and its corresponding IDLos representation.

entity intersection
{

attribute string policy;
};

entity trafficFlow
{

void stopTraffic();
};

relationship flowOwnership
{

role intersection has 1..1 trafficFlow;
role trafficFlow isin 1..1 intersection;

};

Figure 2: A model fragment
in the Visual Design Center

trafficFlow

stopTraffic()

<<kabEntity>>

intersection

policy : string

<<kabEntity>>

1..1

1..1

+isin1..1

+has1..1

flowOwnership

10

Chapter 2: Creating ObjectSwitch models
Models

This model fragment has two entities that are associated using a relationship.
One entity has an attribute of type string, and the other has an operation that
does not return a value. You would specify the implementation of this
operation in Action Language using the action statement (not shown in this
fragment).

You can model graphically in UML, textually in IDLos, or both; the choice
is yours. In both cases your model is compiled into an application that you
can deploy on an ObjectSwitch server.

The ObjectSwitch textual modeling language IDLos is based on IDL v 2.2,
and existing IDL can be used directly in ObjectSwitch applications. IDLos
extends the standard, providing relationships, state machines, and triggers;
as well as entities and actions to specify implementations.

Object oriented

The ObjectSwitch modeling language is fully object-oriented (OO),
supporting inheritance and polymorphism. It also supports some features
often requested but not often found in OO languages: singletons, keys,
triggers, and transactions.

In ObjectSwitch, inheritance includes relationships, state machines, and
triggers. The inheritance of relationships is particularly powerful.

Component oriented

You organize your ObjectSwitch applications in packages. Objects in the
same package have access to one another. To make objects visible outside a
package, you define interfaces.

ObjectSwitch packages are more than an analysis principle. Packages
represent the lowest level of granularity for building components. You can
build one component for each package or group several packages into one
component. And because of the ObjectSwitch runtime technology, you can
add new components to your running application or update existing
components without bringing down your application.

Richly typed

IDLos uses the IDL type system, which provides a rich system of basic and
user-defined types. See Chapter 7 for more on the ObjectSwitch type system.

Chapter 2: Creating ObjectSwitch models
Models

11

Adaptable

The Visual Design Center generates ObjectSwitch runtime components
(processes executed by the ObjectSwitch runtime). You can use a range of
ObjectSwitch adapter factories to expose your model to any number of
technologies, for example, CORBA, Java, PHP, and SNMP.

When you model with ObjectSwitch, you ignore the specifics of the
technology that you expose your model to. You make these implementation
decisions later, at build time. While modeling, you concentrate solely on
your business logic and the interfaces that expose your model.

Importing and exporting IDLos

You can easily convert models between IDLos and UML by importing or
exporting them from the Visual Design Center.

Importing a model from an IDLos file From the Tools menu, select
Kabira ObjectSwitch->Import IDLos and choose the IDLos source file from
the dialog that appears.

Exporting a UML model to IDLos From the Tools menu, select Kabira
ObjectSwitch->Export IDLos and name the IDLos destination file in the
dialog that appears. Alternatively, you can right-click on a package in a class
diagram and selecting Kabira ObjectSwitch->Export Package. You can
export multiple packages by selecting the packages first (using shirt-click or
ctrl-click) and then exporting them using the right-click method.

Exporting UML from the command line The Visual Design Center installation
includes a command you can use to export a UML model to IDLos. The
command is located in the directory where the VDC was installed, and has
the following syntax:

exportModel -model srcpath -exportPath destpath [-packages list]

Where:

srcpath is the fully-qualified path name of the Rose .mdl file representing
your model.

12

Chapter 2: Creating ObjectSwitch models
Models

dstpath is the fully-qualified path name of the subdirectory where the .soc and
.act files will be created.

list is used with the optional -packages list to select particular packages to
export. The argument list is a semicolon-separated list of package names:
package1;package2;package3 and so on. By default (if you do not use the
-packages switch) exportModel exports all packages.

The exportModel command creates separate static (.soc) and action language
(.act) model files, with the same name as their corresponding packages. For
example a package named MyPackage would be exported as MyPackage.soc.

Here's an example command line in the MKS Korn Shell to export all
packages from the model test.mdl to the subdirectory c:\temp:

exportModel -model c:\\temp\\test.mdl -exportPath c:\\temp

You MUST use the double-backslash in the MKS Korn Shell. Forward
slashes will not work because Rose is a Windows application that doesn't
understand the forward slash.

Do not move the exportModel file itself. Either add the Add-In install
directory to your path or invoke exportModel using the fully-qualified file
name.

An example

This example shows two packages; one is a client and the other is a server.
The client will ask the server to say hello, and the server will respond by
printing “Hello World”.

Chapter 2: Creating ObjectSwitch models
Models

13

Visual Design Center The server consists of the entity TalkerImpl and the
interface Talker that exposes the operation sayHi. The sayHi operation is
implemented in the entity TalkerImpl. Clients will invoke the sayHi operation
through the Talker interface.

The operation sayHi is implemented with the following line of action
language:

printf("Hello World\n");

The arrow connecting an interface with the entity that implements it may be
drawn in either direction. The convention in this manual is to show the
arrow pointing at the implementing entity, in the sense of the IDLos verb
“expose”. You may wish to draw the arrow pointing to the interface, in the
sense of the UML verb “realizes”.

Figure 3: The server package

TalkerImpl

sayHi() : void

<<kabEntity>>

Talker

sayHi() : void

<<kabInterface>>

Realize Class Talker

14

Chapter 2: Creating ObjectSwitch models
Models

The client package contains one local entity, Startup, with a lifecycle
operation init that kicks off the application when the runtime initializes the
client component.

The operation init contains the following lines of action language:

declare ::Server::Talker t;
declare ::swbuiltin::EngineServices es;
create t;
t.sayHi();
delete t;
es.stop(0);

IDLos Here is the same model in IDLos:

package Server
{

entity TalkerImpl
{

oneway void sayHi();
};
interface Talker
{

oneway void sayHi();
};
expose entity TalkerImpl with interface Talker;

Figure 4: The client package

Startup

init() : void

<<kabLocalEntity>>

Chapter 2: Creating ObjectSwitch models
Entities

15

};
action ::Server::TalkerImpl::sayHi
{‘

printf(“Hello World\n”);
‘};

package Client
{

[local]
entity Startup
{

[initialize]
void init();

};
};
action ::Client::Startup::init
{‘

declare ::Server::Talker t;
declare ::swbuiltin::EngineServices es;
create t;
t.sayHi();
delete t;
es.stop(0);

‘};

Entities

Modeling with ObjectSwitch means applying an object-oriented approach.
Central questions of any object-oriented approach include

• what types of objects will my application be dealing with?

• what type of data will the objects provide?

• what behavior will the objects display?

For example, one type of object in your application could be specific
customer records. The data of a customer record could include a customer’s
name, address, and phone number. The behavior of a customer record could
involve changing the customer data, for example, when a customer moves or
marries.

In ObjectSwitch to model a type (or class) of object, you use an entity. An
object of that type is an instance of the entity. In an application there can be
many instances of one entity.

16

Chapter 2: Creating ObjectSwitch models
Entities

An entity allows you to define the internal data structures (in the form of
attributes) and behavior (as operations) for a type of object. For entities with
many instances you can define keys to provide efficient selection of
individual objects. Triggers let you invoke behavior when certain events
happen, such as creating a new object or changing an attribute value. You
can model the lifecycle, or states, of the entity’s instances in a state machine.

Entities are the most powerful user-defined type. They are at the heart of
every ObjectSwitch model.

The following table shows the modeling elements that you use to define an
entity’s data and behavior:

Nested types To execute their behavior, instances can also require types of
data that are only valid within the scope of that instance. For example, this
could be a constant that is valid for all instances, a nested entity, or simply
an array of some type.

Attribute Data member of an entity. Each instance
has a data member of the type specified by
an attribute.

Operation Behavior that you invoke on an instance.

Key Unique identifier. Keys enable you to effi-
ciently query for individual instances.

Entity trigger An event-operation pair. A trigger specifies
an operation that is invoked on an instance
at the onset of a certain event, for example,
when you create, delete, refresh, or relate an
instance.

State machine Finite state machine. A state machine
defines the life cycle of an instance, the
states through which each instance can
pass.

Chapter 2: Creating ObjectSwitch models
Entities

17

Within the scope of each entity you can define the following types, which
are then only accessible for an instance of that entity:

Namespace Each entity lives within some namespace (see “Namespaces” on
page 88).You can define an entity only within the direct scope of either a
package or a module.

Relationships You can define a relationship between entities, so that instances
of one entity can be linked to instances of the other entity. See
“Relationship” on page 38.

Inheritance An entity may inherit traits from another entity. See “Inheritance”
on page 75.

Exposure There is no access to an entity from outside its package unless you
explicitly enable it. You enable access to an entity’s attributes and
operations from outside the package using an interface. See “Interface” on
page 59.

Visual Design Center

The Visual Design Center represents an entity as a class with stereotype
kabEntity. An entity has three sections: the header at the top (with stereotype
and entity label, the attribute section in the middle, and the operation section
at the bottom.

To add a new entity to a module or package in the Visual Design Center:

1 click on the entity icon in the toolbar

2 click somewhere in a package or module diagram

Class Specification dialog Once you add an entity to a module or package, you
model its properties, attributes, operations, constants, keys, triggers and
nested types in the Class Specification dialog.

typedef an alias for a basic or composite type

const a named constant

types a basic or composite type

18

Chapter 2: Creating ObjectSwitch models
Entities

To open the Class Specification dialog, right-click on the entity and select
Open Specification

IDLos

Use the entity statement (see "entity" in Chapter 8 for syntax details).

Here is the IDLos for the example above:

entity TimerEventImpl
{

// attributes
attribute Road road;
// operations
oneway void generate ();

};

Figure 5: Class specification
dialog

Chapter 2: Creating ObjectSwitch models
Entities

19

Entity properties

You can tag an entity with properties that affect the number of permitted
instances as well as its representation in shared memory.

The following table shows the properties you can use in the definition of an
entity.

Setting properties In the Visual Design Center you set an entity’s properties in
the General tab of the Class Specification dialog (see “Class Specification
dialog” on page 17).

In IDLos entity properties appear at the beginning of the IDLos statement, in
square brackets.

[singleton] entity PortAllocator {};
[extentless] entity InvoiceItem {};

singleton The singleton property denotes an entity that can have only one
instance. At runtime, creating a singleton either:

• creates an instance if one does not already exist, otherwise it

• returns a reference to the existing instance

Singletons must not be local, and cannot be a supertype or subtype of
another entity.

extentless You can use the extentless property to suppress the creation and
management of extents in the application server.

singleton Only one instance of a singleton entity is
ever instantiated.

extentless The extent (a list of all instances) is not gen-
erated.

dynamicLog The runtime allocates the entity's log when
you modify an instance and frees the log
when the transaction commits or aborts.
This reduces the shared memory footprint
of instances; use this property for instances
which you modify infrequently.

20

Chapter 2: Creating ObjectSwitch models
Entities

ObjectSwitch normally keeps the extent of an entity in shared memory. The
extent is a list of all instances of the entity. Even when an instance is flushed
from shared memory, a reference to it stays in the extent.

Extentless entities, as the name implies, do not have an extent maintained for
them. This places certain restrictions on what you can do, and it optimizes
the behavior of the runtime under certain conditions.

When you iterate across all the instances of an extentless entity, you may
miss some objects or encounter some twice, depending on other
transactions’ use of that type. Similarly, the result of the cardinality
operator is not definitive for extentless entities.

So why would you use extentless objects? Because they may work better in
your design for objects that are either:

• extremely numerous, and the extent itself consumes too much memory

• created and deleted frequently and concurrently, causing lock contention
on the extent

This second point requires some explanation. When normal objects (as
opposed to extentless ones) are created or deleted, their extent is locked until
the completion of the transaction. This prevents other instances of the entity
from being created or destroyed until the transaction completes.

When an extentless object is created or deleted, locking takes place at a
much lower level and for a much shorter period. Once the object creation is
complete, other instances of the type can be created right away. Using
extentless objects can substantially improve performance in certain cases.

Chapter 2: Creating ObjectSwitch models
Local entities

21

Local entities

Local entities like regular entities, but with some optimizations that make
them suitable for the [initialize] and [recovery] engine operations. Normally
you will only use them for these operations. Local entities have a number of
restrictions:

• not distributable

• not recoverable

• cannot be used by clients in other components

• cannot be used as references in distributable types

• cannot be used as parameters in non-local operations

Local entities must not be singletons.

Like the local entity itself, a nested type defined in a local entity cannot be
used as a parameter or return value for an operation, or as an attribute for a
non-native entity.

Exposure There is no access to a local entity from outside its package unless
you explicitly enable it. You enable access to a local entity’s operations with
the following element:

Lifecycle operations Use operations defined in local entities to perform
lifecycle tasks. You specify that an operation is invoked when the runtime
initializes, recovers, or terminates a component (see “initialization, recovery,
termination” on page 33) or before any other lifecycle operation (see
“packageinitialize” on page 33).

Local Interface Defines operations that are accessible from
outside a local entity’s package.

22

Chapter 2: Creating ObjectSwitch models
Local entities

Visual Design Center

The Visual Design Center represents a local entity as a class with stereotype
kabLocalEntity. Like an entity, a local entity has three sections: the header at
the top (with stereotype and entity label, the attribute section in the middle
(which is always empty), and the operation section at the bottom.

To add a new local entity to a module or package in the Visual Design
Center:

1 click on the local entity icon in the toolbar

2 click somewhere in a package or module diagram

You can define operations and nested types for a local entity in the entity’s
Class Specification dialog (see “Class Specification dialog” on page 17).

IDLos

Use the entity statement. A local entity is an entity marked with the local
property (see "local entity" in Chapter 8 for syntax details).

[local]
entity StartUp
{

// operations

Figure 6: Local entity in the
Visual Design Center

TimerEvents

generate()

<<kabLocalEntity>>

Chapter 2: Creating ObjectSwitch models
Attribute

23

[initialize]
void initData ();

};

[local]
entity Utilities
{

void who();
void whatis();

};

Attribute

Attributes specify the data members of entities. You define an attribute in an
entity or an interface. Defining an attribute in an interface enables cross-
package access to the same attribute in the exposed entity.

An attribute has a type and an attribute label. Attributes can be of any valid
type.

You can define a trigger that invokes an operation when an attribute is
accessed (see “Attribute trigger” on page 46 for details).

24

Chapter 2: Creating ObjectSwitch models
Attribute

Visual Design Center

The Visual Design Center represents attributes in the middle section of an
entity. First the label appears and then the type, separated by a colon (see the
figure below).

To add an attribute to an entity or interface:

1 open the Class Specification dialog (see “Class Specification dialog” on
page 17)

2 click on the Attributes tab

3 click on the Add button

Figure 7: Attributes in Visual
Design Center

ModeRequest

modeType : ModeType

modeDir : RoadDirection

timeGreenNS : long

timeYellowNS : long

timeGreenEW : long

timeYellowEW : long

timeChange : boolean

<<kabEntity>>

Chapter 2: Creating ObjectSwitch models
Attribute

25

This opens the Attribute Specification dialog (see the figure below), where
you can specify the attribute’s label in the Name field and select its type
from the Type drop-down selection box and set the attribute to readOnly if
desired.

IDLos

Use the attribute statement (see "attribute" in Chapter 8 for syntax details).

Here is the IDLos for the example in Figure 7:

entity ModeRequest
{

// attributes
attribute ModeType modeType;
attribute RoadDirection modeDir;
attribute long timeGreenNS;
attribute long timeYellowNS;
attribute long timeGreenEW;
attribute long timeYellowEW;
attribute boolean timeChange;

};

Figure 8: Attribute
Specification dialog

26

Chapter 2: Creating ObjectSwitch models
Operation

Read-only attributes

You can optionally use the readonly keyword to specify that an attribute may
not be modified. Attributes are read-write by default unless you specify
readonly.

Specifying a ready-only attribute In the Visual Design Center you specify this in
the General tab of the Attribute Specification dialog (see Figure 8).

In IDLos you use the readonly keyword at the beginning of the attribute
statement:

readonly attribute long employeeIndex;

Operation

Operations provide a way to invoke actions on an object. You define an
operation in an entity or an interface. Defining an operation in an entity
provides an entry point for invoking behavior; defining it in an interface
exposes that operation to other packages.

Operations can be invoked and executed at any time. In contrast, use a state
machine to specify behavior that takes place as objects pass through
different states.

Each operation has a signature: name, parameters, and return type. An
operation may also raise exceptions. An operation’s name must be unique
within the entity’s namespace, and cannot be overloaded.

Parameters Operations can take parameters. Parameters have a type and a
direction: in, inout, and out. Parameters with the in direction cannot be
changed by the operation’s implementation. Parameters with the inout and out
direction may be changed.

You cannot call a non-const operation on a const reference. All in parameters
are passed in as const references. Remember that in a const operation, self is a
const reference.

Return type The return type can be any type valid in the context of the
operation, or void if there is no type returned.

Chapter 2: Creating ObjectSwitch models
Operation

27

Exceptions You must specify the exceptions that an operation raises (for
more on exceptions, see Chapter 2).

You implement operations using action language (for more on action
language, see Chapter 3).

One-way and two-way operations By default, operations are two-way, or
synchronous, operations. The work is dispatched to the destination and the
caller blocks (suspends execution) until the operation returns. But you can
explicitly define a one-way, or asynchronous, operation. When a caller
invokes a one-way operation, the caller keeps executing even though the
work may not yet be completed.

Visual Design Center

The Visual Design Center represents operations in the bottom section of an
entity. The following figure shows an entity with the operation signatures
displayed.

Operations are managed from the Operations tab of the Class Specification
dialog. From this tab you can add and delete operations as well as specify a
return type.

Figure 9: Operations in
Visual Design Center

GUIProxyImpl

updateMode(modeType : ModeType, modeDir : RoadDirection) : void
updateSensor(newCar : boolean, carDir : SideDirection) : void
getLightN() : LightColor
addRequest(req : ModeRequest) : void
getAllLights(north : LightColor, south : LightColor, west : LightColor, east : LightColor) : void

<<kabEntity>>

28

Chapter 2: Creating ObjectSwitch models
Operation

The operation label appears in the Name field and the operation return type
in the Return type field (this field is a drop-down selection box), and
parameters in the Parameters field (see the figure below).

To add an operation to an entity, local entity, interface, or local interface:

1 open the Class Specification dialog (see “Class Specification dialog” on
page 17)

2 select the Operations tab

3 click the Add button

This opens the Operation Specification dialog, where you can specify the
operation’s signature, set properties, specify exceptions raised by the
operation, and add the action language implementation. The Operation
Specification dialog has four tabs: General, Parameters, Action Language,
and Raises.

Figure 10: Adding an
operation in the Visual Design

Center

Chapter 2: Creating ObjectSwitch models
Operation

29

General tab In the General tab of the Operation Specification dialog (see the
figure below) you can enter the operation’s identifier in the Name field,
select a return type from the Return type selection box, and set properties
(see “Operation properties” on page 31).

Parameters tab In the Parameters tab of the Operation Specification dialog
(see the figure below) you can add a parameter with the Add button. Once
you have added a parameter, you can edit the default values for direction,
type, and parameter name. The Direction and Type fields are selection boxes
that enable you to select a listed value. You can edit the Name field directly.

Action Language tab Click on the Add Action Language button to edit the
operation’s action language implementation.

Modeless action language editor If you right-click on an operation, you can
invoke the Action Language editor as modeless. This means that you can
navigate the model to see your types, constants, etc. without having to first
close the editor.

Raises tab You can specify exceptions that the operation can raise.The
Exceptions pane shows exceptions that you can select for the operation. The
Raises pane shows exceptions that are currently selected.

Figure 11: General and
Parameters tab in the Operation

Specification dialog

30

Chapter 2: Creating ObjectSwitch models
Operation

To move an exception from the Exceptions to the Raises pane, highlight the
exception in the Exceptions pane and click on the arrow pointing to the
right.

To move an exception from the Raises to the Exceptions and, highlight the
exception in the Raises pane and click on the arrow pointing to the left.

IDLos

For a detailed description of the IDLos syntax for operations, see
"operation" in Chapter 8.

Here is the IDLos for the example in Figure 9:

entity GUIProxyImpl
{

// operations
void updateMode (

in ModeType modeType,
in RoadDirection modeDir);

void updateSensor (
in boolean newCar,
in SideDirection carDir);

LightColor getLightN () raises (expLightNotFound);
void addRequest (inout ModeRequest req);
void getAllLights (

Figure 12: Action Language
and Raises tabs in the

Operations Specification dialog

Chapter 2: Creating ObjectSwitch models
Operation

31

out LightColor north,
out LightColor south,
out LightColor west,
out LightColor east);

};

Operation properties

The following table shows the properties you can use in the definition of an
operation.

local The runtime invokes a local operation
directly, rather than dispatching it through
the event bus (see “local” on page 32).

const The operation cannot change the internal
state of the object (see “const” on page 32).

oneway The operation is asynchronous; all other
operations are twoway, or synchronous (see
“oneway” on page 33).

virtual Defines a polymorphic operation (see “vir-
tual” on page 33).

initialize Lifecycle property (applies only to opera-
tions defined in a local entity): The runtime
invokes the operation when the operation’s
component initializes (see “initialization,
recovery, termination”).

recovery Lifecycle property (applies only to opera-
tions defined in a local entity): The runtime
invokes the operation when the operation’s
component recovers (see “initialization,
recovery, termination”).

32

Chapter 2: Creating ObjectSwitch models
Operation

Setting operation properties In the Visual Design Center, you set an operation’s
properties in the General tab of the Operation Specification dialog (see
Figure 11).

In IDLos operation properties appear at the beginning of the IDLos
statement, in square brackets:

[oneway, virtual]
void addRequest (inout ModeRequest req);

local When you build a component that invokes a local operation, you must
link in the local operation’s implementation.

Local entities may be used as operation parameters to local operations, or as
parameters to operations defined in a local entity (see “Local entities” for
more).

const The const property restricts what an operation can do. The restrictions
that it imposes are:

• a const operation cannot change the internal state of the object

• the action language that implements the operation may not invoke any non-
const operations

If an operation in an entity is marked const, then it must also be marked const
in any interfaces that expose it. Similarly, if it is not marked const, then it
must not be marked const in the interface. This can be stated as:

terminate Lifecycle property (applies only to opera-
tions defined in a local entity): The runtime
invokes the operation when the operation’s
component terminates (see “initialization,
recovery, termination”).

packageinitialize Lifecycle property (applies only to opera-
tions defined in a local entity): The runtime
invokes the operation before all other life-
cycle operations when the operation’s com-
ponent initializes (see “packageinitialize”
on page 33).

Chapter 2: Creating ObjectSwitch models
Operation

33

An exposing operation in an interface must match the “constness” of the
operation in the underlying entity.

oneway Delivery of a oneway operation is guaranteed. A oneway operation
must return void, can be neither inout nor out parameters, and cannot raise an
exception.

Asynchronous operations are good for ObjectSwitch performance. They help
ObjectSwitch take advantage of its multi-threaded architecture, and they
alleviate object lock contentions by starting new transactions. Too many
synchronous calls can get all the objects locked up in the same transaction.
Use synchronous calls sparingly.

virtual This property forces an operation to be dispatched polymorphically.
This means operations are invoked based on the actual instance type, rather
than on the type of the handle. So even when you upcast a subtype object to
the supertype, if an operation is marked virtual in the supertype, the subtype
operation is invoked. See “Virtual operations and polymorphic dispatch” on
page 82.

initialization, recovery, termination You can mark operations so that the
ObjectSwitch runtime invokes them upon component initialization,
recovery, or termination. You may define any number of such operations in
any number of local entities.

You do not know the order that these three types of lifecycle operations are
invoked. For example, if you define multiple initialize operations in a
component, then these operations may execute in any order (although
operations in singletons will execute before operations in other entities).

Although initialize and recovery operations are invoked when the engine
starts, it is possible that external events (from other engines) may be
processed before the lifecycle operation. Where this could cause a problem,
use the packageinitialize property described below.

packageinitialize You can use the packageinitialize property, to designate an
operation that executes before any other lifecycle operation. It also executes
before any external events are processed; this lets you clean up process
resources on initialization and recovery.

34

Chapter 2: Creating ObjectSwitch models
Operation

The packageinitialize operation must be a two-way operation with no
parameters or return value. It can only access entities in the same package.
Another way to say this is that it cannot access any interfaces from other
packages. If this is attempted, the runtime will report a fatal error and exit
the engine.

The packageinitialize property replaces the package_initialize property used in
previous versions. The old spelling is supported for compatibility but is
deprecated. Use packageinitialize instead.

Lifecycle example The example contains a local entity with several lifecycle
operations. The runtime invokes init and initializeServices when the component
is initialized, intializeServices and checkNetConnections when it recovers the
component, and cleanUp when it terminates the component.

Consider the local entity EngineEvents in the following figure.

Figure 13: Lifecycle
operations

EngineEvents

init() : void
initializeServices() : void
checkNetConnections() : void
cleanUp() : void

<<kabLocalEntity>>

Chapter 2: Creating ObjectSwitch models
Operation

35

The following figure shows the lifecycle settings for the operations
initializeServices and cleanUp.

IDLos Here is IDLos for the example above:

[local]
entity EngineEvents
{

[initialize]
void init();

[
initialize,
recovery

]
void initializeServices();
[recovery]
void checkNetConnections();

[terminate]
void cleanUp();

};

Figure 14: Setting lifecycle
properties for an operation

36

Chapter 2: Creating ObjectSwitch models
Key

Automatic target instance All these lifecycle operations implicitly create a new
instance of the entity and invoke the operation on that instance; the instance
is destroyed when the operation completes. (If the entity is a singleton, the
instance is created only if it does not already exist, and is not deleted when
the operation completes.)

Although you can have lifecycle operations in any entity, it is better to use
local entities only. The auditor will warn you if you use lifecycle operations
on non-local entities.

Key

A key uniquely identifies an instance of an entity (see “Entities” on
page 15). You define a key in an entity or an interface (see “Interface” on
page 59). Defining a key in an interface enables cross-package access to the
key in the exposed entity.

You define a key to use one or more attributes (see “Attribute” on page 23).
Each key has a name. An entity may contain no more than three keys.

When you construct a query in action language, and you use all the attributes
of the key in your where clause (see "select" in Chapter 9), ObjectSwitch
optimizes the search. The key must evaluate to a unique value.

If a key appears in an interface, the identical key must exist in the entity that
implements that interface. If an interface exposes all the attributes used in a
key, but does not expose the key, the Design Center auditor will generate a
warning.

You may not define a key in an entity that has any operations tagged with a
lifecycle property (see “Lifecycle operations” on page 21).

There is currently no key support for attributes of these types: unbounded
string, sequence, or array.

Chapter 2: Creating ObjectSwitch models
Key

37

Visual Design Center

You manage an entity’s keys in the Keys tab of the Class Specification
dialog (see the figure below).

The existing keys appear in the top-left pane. The key’s label appears in the
Keyname field, which you can edit directly. The attributes that make up the
key appear in the Attribute field.

All of the entity’s attributes that are available for constructing a key appear
in the top-right pane.

To add a new key, click on the Add button.

To delete a key, select the key and click on the Delete button.

To add an attribute to a key, select the key and click on that attribute’s name
in the top-right pane.

To remove all attributes from a key’s definition, select the key and click on
the Clear button.

Figure 15: Keys in the Visual
Design Center

38

Chapter 2: Creating ObjectSwitch models
Relationship

IDLos

Use the key statement (see "key" in Chapter 8 for syntax details). List the
attributes comprising a key as a comma-separated list enclosed in braces.

entity employee
{

attribute string firstname;
attribute string middleinitial;
attribute string lastName;
attribute long SSN;
attribute long employeeNumber;

key first {SSN};
key second {employeeNumber, SSN};

};

Relationship

Relationships define associations between entities. They let you link two
instances, using relate in action language, or unlink them, using unrelate.
When instances are linked, you can use action language to navigate across
the links, to retrieve an associated instance, or retrieve a set. “Handling
relationships” on page 115 has more information on relate, unrelate and
navigation.

Relationships are a powerful abstraction, relieving you from writing
numerous accessors and handling relationship integrity. The ObjectSwitch
server optimizes link storage, set retrieval, and keyed searches. All the
relates and unrelates are transactional. Relationship integrity is part of
ObjectSwitch server transactions.

You can navigate a relationship from one object to the next, or back the
other way. A relationship in ObjectSwitch has one or two roles defined to
provide navigation in one or both directions.

Roles Roles have a name, a from entity, a to entity, and a multiplicity.

A relationship containing just one role is a one-way relationship, and cannot
be navigated from the other side of the role. Only one-way relationships may
cross package boundaries: the to entity may be in another package.

Chapter 2: Creating ObjectSwitch models
Relationship

39

There is no guarantee that a relationship will be selected in the same order in
which it was related. Ordering can be maintained with additional reflexive
relations such as linked lists.

Visual Design Center

The Visual Design Center represents a relationship between two entities as a
solid line. The name of the relationship appears next it. Role names and
multiplicity appears next to the to entity.

This example in the figure above defines two relationships. The textual
descriptions are:

• Relationship R5: every SideOfRoad is controlled by one-or-more Lights, and
each Light controls one-and-only-one SideOfRoad.

• Relationship R6: every CarSensor senses a car on one-and-only-one
SideOfRoad, and every SideOfRoad has one-and-only-one CarSensor.

The example shows a role named controls. Light is the from entity; SideOfRoad

is the to entity. And the multiplicity is 1..1.

To add a relationship between two entities:

1 select the Unidirectional Association icon in the toolbar

Figure 16: Relationship
example

Light

colorSetting : ::Traffic::LightCol...

<<kabEntity>>

SideOfRoad

direction : ::Traffic::SideDirection

<<kabEntity>>

1..1

1..*

+controls1..1

+is_controlled_by1..*

R5

CarSensor

carPresent : boolean

<<kabEntity>>

1..1

1..1

+has_a1..1

+senses_car_on1..1

R6

40

Chapter 2: Creating ObjectSwitch models
Relationship

2 click and hold the mouse button pressed on one of the entities

3 drag the cursor to the second entity

To edit the relationship role names and multiplicity, open the Association
Specification dialog (see the figure below). You can edit the Name field and
select a value from the Multiplicity drop-down selection box for each role.

You can also specify a relate and unrelate trigger for each role (see “Role
trigger” on page 48 for more on role triggers).

IDLos

Use the relationship statement (for syntax details, see "Relationship" in
Chapter 8.

Here is the IDLos for the example in Figure 16:

relationship R5
{

Figure 17: Association
Specification dialog

Chapter 2: Creating ObjectSwitch models
Relationship

41

role Light controls 1..1 SideOfRoad;
role SideOfRoad is_controlled_by 1..* Light;

};
relationship R6
{

role SideOfRoad has_a 1..1 CarSensor;
role CarSensor senses_car_on 1..1 SideOfRoad;

};

Associative relationships

Sometimes, there is data associated with each link between two instances.
For example, a separate marriage certificate belongs to every marriage,
containing the wedding date, the location, and officiating official.

Visual Design Center The Visual Design Center displays an association
between a relationship and an entity with a dashed line, as shown in the
figure below.

To establish an association between a relationship and an entity:

1 right-click on the line representing the relationship

2 select Open Specification ... in the context menu

Figure 18: An associative
relationship using an

associative entity

MarriageCertificate

m_date : string
location : string
name_of_official : stri...

<<kabEntity>>

Wife
<<kabEntity>>

Husband
<<kabEntity>>

1..1

1..1

+weds1..1

+marries1..1

Marriage

42

Chapter 2: Creating ObjectSwitch models
Entity trigger

3 click on the Add Association Entity tab

4 select the entity from the Name drop-down list

IDLos Use the using statement to set up an association between a relationship
and an entity.

entity Husband {};
entity Wife {};
entity MarriageCertificate
{

string date;
string location;
string name_of_official;

};
relationship Marriage
{

role Husband marries 1..1 Wife;
role Wife weds 1..1 Husband;
using MarriageCertificate;

};

The using phrase in the relationship block indicates which entity to use for the
association.

Entity trigger

Entity triggers allow you to specify operations that the runtime invokes at
the onset of certain types of events, for example, when your application
instantiates an entity or deletes an instance. You define an entity trigger
within the context of an entity.

When you define an entity trigger, you can only use operations that you
define directly in the entity or in a supertype.

Trigger type Invokes the trigger operation when...

commit a transaction in the entity commits (see
“commit, abort” on page 43).

abort a transaction in the entity aborts (see “com-
mit, abort” on page 43).

create you create an instance of entity type (see
“create, refresh, state-conflict” on page 44).

Chapter 2: Creating ObjectSwitch models
Entity trigger

43

commit, abort The trigger operation must be in the entity and satisfy the
following conditions:

• it is two-way (cannot be a signal or oneway)

• its return type is void

• it has no parameters

Abort and commit triggers must be implemented by two-way operations,
and need to be enabled in the action language in order for them to be called.
e.g.:

action doit
{`

// enable abort trigger, then do stuff that
// may deadlock.
declare ::swbuiltin::ObjectServices os;
os.enableAbortTrigger(self);
GoDoSomething();

`};

Abort and commit triggers are not invoked during recovery. When an engine
recovers, any transactions that have begun to commit are committed, and all
open transactions are aborted—but this does not invoke any triggers.

Abort and commit triggers must not take any locks—because there is no
valid transaction context for the lock.. Doing so causes a run-time error with
unpredictable results. Be very careful when writing actions that implement
abort and commit triggers. Refer to the section on locks in Advanced
ObjectSwitch Modeling to understand what actions may take a lock.

delete you delete an instance of entity type (see
“create, refresh, state-conflict” on page 44).

refresh you refresh an instance of entity type, from
a remote node or data store (see “create,
refresh, state-conflict” on page 44).

state-conflict a state conflict occurs.

Trigger type Invokes the trigger operation when...

44

Chapter 2: Creating ObjectSwitch models
Entity trigger

create, refresh, state-conflict The trigger operation must be in the entity and
satisfy the following conditions:

• it is two-way, oneway, or signal

• its return type is void

• it has no parameters

If you specify initial values in a create statement (see "Manipulating data" in
Chapter 3), then the create trigger fires after the values are set.

delete The trigger operation must be in the entity and satisfy the following
conditions:

• it is two-way

• its return type is void

• it has no parameters

Create and delete triggers with inheritance: If you define create triggers for
both the supertype (parent) and subtype (child), then the supertype trigger
fires before the one in the subtype. Conversely, subtype delete triggers fire
before those in a supertype.

Chapter 2: Creating ObjectSwitch models
Entity trigger

45

Visual Design Center

You manage entity triggers in the Triggers tab of the entity’s Class
Specification dialog. There is a drop-down selection box for each type of
entity trigger. The Visual Design Center only displays operations that satisfy
the conditions for the respective trigger type (see the figure below).

IDLos

Use the trigger statement (for syntax details, see "trigger" in Chapter 8).

The definition appears within the scope of the entity to which it applies.

The following IDLos shows several examples of entity triggers:

entity PedestrianLight
{

// operations
void powerup();
void cleanup();
void reset();

Figure 19: Action Language
and Raises tab

46

Chapter 2: Creating ObjectSwitch models
Attribute trigger

// triggers
trigger powerup upon create;
trigger cleanup upon delete;
trigger reset upon refresh;

};

Attribute trigger

Attribute triggers allow you to specify operations that the runtime invokes at
the onset of certain types of events, for example, when your application sets
or accesses an attribute value. You can define attribute triggers to occur both
before or after an attribute is set, or before or after an attribute is retrieved.

pre-get, post-get, pre-set, post-set The trigger must be defined in the same entity
as the attribute to which it applies. The trigger operation can be inherited.
The trigger operation must satisfy the following conditions:

• it is one-way, two-way, or a signal

• its return type is void

• it has no parameters

Trigger type Invokes the trigger operation when...

pre-get before you access the value assigned to an
attribute.

post-get after you access the value assigned to an
attribute.

pre-set before you assign a value to an attribute.

post-set after you assign a value to an attribute.

Chapter 2: Creating ObjectSwitch models
Attribute trigger

47

Visual Design Center

You manage attribute triggers in the Trigger tab of the Attribute
Specification dialog. You can select an operation from the drop-down
selection box for each attribute trigger type (see the figure below). The
Visual Design Center only displays operations that satisfy the conditions for
the respective trigger type.

IDLos

Use the trigger ... upon statement (for syntax details, see "trigger" in Chapter 8.

The following IDLos shows examples of each type of attribute trigger:

entity Light
{

// attributes
attribute LightColor colorSetting;

// operations
void precondition();
oneway void postcondition();

Figure 20: Action Language
and Raises tab

48

Chapter 2: Creating ObjectSwitch models
Role trigger

oneway void broadcast();

// signals
signal logAccess();

// triggers
trigger precondition upon pre-set colorSetting;
trigger postcondition upon post-set colorSetting;
trigger logAccess upon pre-get colorSetting;
trigger broadcast upon post-get colorSetting;

};

Role trigger

Role triggers invoke operations when a role is related or unrelated. You
specify role triggers for a specific role in a specific relationship; it must be
defined for the same relationship as the role to which it applies.

The operation must have one parameter, which is the type of the to entity
defined in the role. The operation must be defined in the from entity.

relate, unrelate The role trigger operation can be inherited. The role trigger
operation must satisfy the following conditions:

• it is one-way, two-way, or a signal

• it is defined in the "from" entity

• its return type is void

• it has a single parameter of the "to" entity type, or the "associative" entity
for associative relationships.

Trigger type Invokes the trigger operation when ...

relate you relate instances using the role.

unrelate you unrelate instances related through the
role, explicitly or when the to instance is
deleted.

Chapter 2: Creating ObjectSwitch models
Role trigger

49

When two objects are related and one of them is deleted, the objects are
implicitly unrelated. This invokes any unrelate trigger defined for the role
“from” the remaining object. But if an unrelate trigger is defined “from”

the deleted object, that trigger is not invoked by the implicit unrelate.

Visual Design Center

You manage role triggers in the General tab of the Association Specification
dialog.

To define a relate role trigger for a relationship:

1 open the Association Specification dialog for the relation (right-click on
the relationship and select Open Specification ...)

2 select the operation from the relateTrigger drop-down selection box

To define an unrelate role trigger for a relationship:

1 open the Association Specification dialog for the relation (right-click on
the relationship and select Open Specification ...)

2 select the operation from the unrelateTrigger drop-down selection box

50

Chapter 2: Creating ObjectSwitch models
Role trigger

Consider the following model in the Traffic package.

Figure 21: Relationship with
operations for triggers

TrafficSignal

regForMaintenance(i : ::Traffic::Intersection) : v...
cancelMaintenance(i : ::Traffic::Intersection) : v...

<<kabEntity>>

Intersection
<<kabEntity>>

1..1

0..*

+installedAt1..1

+controlledBy0..*

TrafficSignalInstallation

Chapter 2: Creating ObjectSwitch models
Role trigger

51

In the following figure, the regForMaintenance operation is specified as the
relate trigger for the controlledBy role; the cancelMaintenance operation is
specified as the unrelate trigger for the same role.

IDLos

Use the trigger ... upon statement (for syntax details, see "trigger" in Chapter 8.

Here is the IDLos for the example in Figure 21:

entity TrafficSignal
{

oneway void regForMaintenance(in Intersection i);
oneway void cancelMaintenance(in Intersection i);

};
entity Intersection
{
};

Figure 22: Relationship with
operations for triggers

52

Chapter 2: Creating ObjectSwitch models
Role trigger

relationship TrafficSignalInstallation
{

// roles
role Intersection controlledBy 0..* TrafficSignal;
role TrafficSignal installedAt 1..1 Intersection;

// triggers
trigger TrafficSignal::regForMaintenance
upon relate controlledBy;
trigger TrafficSignal::cancelMaintenance
upon unrelate controlledBy;

};

Associative role triggers For associative relationships, you define the trigger
operation in the “from” entity. This operation must take a single parameter
whose type matches the associative entity.

Here is a modified version of the example for the marriage relationship
presented in Figure 18.

In the Visual Design Center, to add a relate associative role trigger to the
example:

1 add the trigger operation announceMarriage(in ::MarriageCertificate mc) to the
Wife entity

2 open the Association Specification dialog for the Marriage relationship

3 select the trigger operation announceMarriage from the relateTrigger
drop-down selection box

Here is the modified example in IDLos:

entity Wife
{

// new operation as target for the trigger
void announceMarriage(in MarriageCertificate mc);

};

relationship Marriage
{

Husband marries 1..1 Wife;
Wife weds 1..1 Husband;
using MarriageCertificate;
trigger Wife::announceMarriage upon relate weds;

};

Chapter 2: Creating ObjectSwitch models
Module

53

action Pkg::Wife::announceMarriage
{`

// send out announcements
`};

Module

Modules define a namespace. Inside a package, modules represent the main
means of defining namespaces.

You can add a module to one of the following:

• Package

• Module

You can model anything in a module that you can in a package For a list of
the elements see “Package”.

Visual Design Center

The Visual Design Center represents a module as a package with stereotype
kabModule.

Figure 23: Relationship with
operations for triggers

MyModule

<<kabModule>>

54

Chapter 2: Creating ObjectSwitch models
Package

IDLos

Use the module statement (for syntax details, see"module" in Chapter 8).

Here is IDLos for the example above:

module myModule
{

...
};

Package

This section describes ObjectSwitch packages and how to use them.
Everything in ObjectSwitch is organized into packages. Packages hide
access to their entities, and each package is a namespace.

When you are implementing a package, you have open access to everything
in your package. You also have open access to everything in other packages
- except the entities. Entities are hidden inside their package. The only way
to use an entity in another package is through an interface (see “Interface” on
page 59).

ObjectSwitch packages may not be nested.

You can model all of the following within a package:

Entities Class of objects.

Local entities Non-distributable class of objects.

State machine Alias for a basic or composite type.

Const Named constant (on types, see Chapter 2).

ObjectSwitch
types

Basic or composite type.

Relationship Defines an association between the same or two dif-
ferent entities. You can link instances of related enti-
ties through a relationship.

55

Chapter 2: Creating ObjectSwitch models
Package

Using Packages As a client of a package, you can:

• declare and create interfaces

• invoke exposed operations

• access exposed attributes

• navigate, relate, or unrelate exposed roles.

• implement abstract interfaces

• employ user-defined types

Inheritance Defines the inheritance relationship between two
entities, the supertype and subtype; a subtype inher-
its the attributes and operations defined in the super-
type.

Interface
(and exposure)

Defines entity exposure across package borders.

56

Chapter 2: Creating ObjectSwitch models
Package

Visual Design Center

The Visual Design Center represents an ObjectSwitch package as a UML
package with stereotype kabPackage (see the figure below).

To add a new package

1 click on the ObjectSwitch package icon in the toolbar

2 click anywhere in the Class Diagram: Logical View / Main window

IDLos

Use the package statement (for syntax details, see"package" in Chapter 8).

Here is the IDLos for the example above:

package PublicWorks
{

...
};

Figure 24: Package in the
Visual Design Center

PublicWorks

<<kabPackage>>

Chapter 2: Creating ObjectSwitch models
Package

57

Example

Consider the PublicWorks package, which contains the following model, given
first in its visual form, then in IDLos.

The same model in IDLos:

package PublicWorks
{

typedef string Manager;
typedef sequence<string> Team;
enum GrantAgency { FTA, CalTrans, POP };
entity TransitImpl
{

struct Funding
{

long amount;
string dueDate;
GrantAgency nextSignature;

};

attribute Manager mgr;
attribute Team team;
attribute GrantAgency grantAgency;

};
interface Transit
{

attribute Manager mgr;

Figure 25: Package
PublicWorks

Manager

 : string

<<kabTypedef>>>>

Team

<<kabSequence>> : string

<<kabTypedef>>

GrantAgency

FTA
CalTrans
POP

<<kabEnum>>

TransitImpl

mgr : Manager
team : Team
grantAgency : GrantAgency

<<kabEntity>>

Funding

amount : long
dueDate : string
nextSignature : GrantAgency

(from TransitImpl)

<<kabStruct>>

Transit

mgr : Manager

<<kabInterface>>>>

Realize Class Transit

58

Chapter 2: Creating ObjectSwitch models
Package

};
expose entity TransitImpl with interface Transit;

};

A client of the PublicWorks package would have access to the Manager, Team,
Transit, and GrantAgency types. But the client would not have access to
TransitImpl type nor to the Funding structure nested in the entity.

The Transit interface does give the client access to the mgr attribute of
TransitImpl through Transit.mgr. Interfaces are discussed in detail below.

Package properties

You can tag a package with properties that affect the IDLos exported for the
package from the Visual Design Center. For example, you can specify
IDLos statements that appear in the output before, after, and inside the
IDLos package statement. You can also specify file names for exporting the
IDLos.

The following table shows the properties you can use in the definition of an
entity.

Setting package properties In the Visual Design Center, you set package
properties by opening a dialog directly from the package.

To open the Package Specification dialog, right-click on the package and
select Kabira ObjectSwitch->ObjectSwitch Package Specification. In the
dialog that appears, set the properties you want to apply to the package.

preInsert IDLos statements to insert before the pack-
age

insert IDLos statements to insert just inside the
package

postInsert IDLos statements to insert after the package

packageFilename Name and path of file for exporting IDLos.

actionFilename Name and path of file for exporting action
language

Chapter 2: Creating ObjectSwitch models
Interface

59

Interface

To give a client of your package access to an entity, you must provide an
interface. The interface exposes the entity. The contents of the interface
controls which attributes, operations, keys, and signals are exposed.

Each interface may expose only one entity. An entity may be exposed by
more than one interface. Each operation or attribute in the interface must
have a corresponding attribute, operation, or signal in the entity that it
exposes.

An interface is an alias of the entity it exposes. You can use an interface type
wherever you may use the entity type.

The following table shows the elements of an entity that an interface can
expose:

Nested types The nested types constraints that apply to entities also apply to
interfaces (see “Nested types” on page 16).

Namespace The namespace constraints that apply to entities also apply to
interfaces (see “Namespace” on page 17).

Association The association constraints that apply to entities also apply to
interfaces (see “Relationships” on page 17).

Instantiation Instantiating an interface creates an object of the exposed entity
type. You instantiate an interface with the same action language statements
used to instantiate entities. (See “Creating objects” in Chapter 2 for details.)

Attribute Attribute in the entity that the interface exposes.

Key Key in the entity that the interface exposes.

Operation Operation in the entity that the interface exposes.

Signal Signal in the state machine of the entity that the
interface exposes.

60

Chapter 2: Creating ObjectSwitch models
Interface

Exposure The following table lists the elements that you can expose with an
interface and shows how each element is exposed:

To expose ... You must ...

an attribute declare the same attribute in the interface
(see “Attribute” on page 23). The attribute
must match the entity’s attribute in name
and type. Attribute access can also be
marked readonly in an interface, exposing
only the get accessor outside the package.

a key declare the key just like it is declared in the
underlying entity.

a signal declare a oneway void operation of the
same name and signature as the signal in the
entity (see “Signal” on page 73).

an operation declare an operation having the same name,
signature (see “Operation” on page 26), and
return type as the one in the entity. It must
also match in its local properties. Operations
marked oneway in an entity must also be
marked oneway in an exposing interface. An
operation in an interface must not be
marked virtual.

Chapter 2: Creating ObjectSwitch models
Interface

61

Interfaces and adapters ObjectSwitch adapter factories can generate different
code for the same interfaces. This is why more than one interface per entity
is allowed.

a relationship between
entities

define it between interfaces (see “Relation-
ship” on page 38). Do not define the same
relationship between the corresponding
entities; defining it between the interfaces
also defines it for the entities.

user-defined types (such
as structs, enumerations,
and typedefs) defined in
an entity

move the type definition from the entity to
one of its interfaces (on types, see Chapter
2).

A type defined in an entity is hidden from
other packages. A type defined in package
scope, module scope, entity scope, or an
interface scope is automatically exposed to
other packages.

Types defined in an interface are exposed,
just as everything else defined in the inter-
face is exposed.

To expose ... You must ...

62

Chapter 2: Creating ObjectSwitch models
Interface

In the following model, three interface expose the same entity, one for each
of the technologies SNMP, CORBA and other.

Here is the IDLos for the same model:

entity CarSensor
{

void reset();
void activate();
void test();

};
interface CarSensorForSNMP
{

void reset();
};
interface CarSensorCORBA
{

void activate();
};
interface CarSensorOther
{

void test();
};
expose entity CarSensor with interface CarSensorSNMP;
expose entity CarSensor with interface CarSensorCORBA;
expose entity CarSensor with interface CarSensorOther;

Figure 26: Interface in the
Visual Design Center

CarSensor

carPresent : boole...

reset()
activate()
test()

<<kabEntity>>

CarSensorSNMP

reset()

<<kabInterface>>

CarSensorCORBA

activate()

<<kabInterface>>

CarSensorOther

test()

<<kabInterface>>>>

Realize Class CarSensorSNMP

Realize Class CarSensorCORBA

Realize Class CarSensorOther

Chapter 2: Creating ObjectSwitch models
Interface

63

In the Design Center, the adapter could generate SNMP agent code for reset,
CORBA server code for activate, and code for another technology for the test
operation.

Visual Design Center

The Visual Design Center represents an interface as a class with stereotype
kabInterface. An interface has three sections: the header at the top (with
stereotype and interface label, the attribute section in the middle, and the
operation section at the bottom (see the figure below).

To add a new interface to a module or package:

1 click on the interface icon

2 click somewhere in the package or module diagram

To expose an entity with an interface:

1 click on the realizes icon

2 click on the entity you want to expose and while holding the mouse but-
ton pressed, drag the cursor to the exposing interface

Figure 27: Interface in the
Visual Design Center

TimerEvent

road : ::Traffic::Road

generate()

<<kabInterface>>

64

Chapter 2: Creating ObjectSwitch models
Interface

Once you have added an interface to a module or package, you model its
properties, attributes, operations, constants, keys, triggers and nested types
in its Class Specification dialog (see “Class Specification dialog” on
page 17).

IDLos

Use the interface statement (for syntax details, see"interface" in Chapter 8).

Here is the IDLos for the example above:

interface TimerEvent
{

attribute ::Traffic::Road road;
void generate();

};

To expose an entity with an interface, use the expose statement (for syntax
details, see "expose" in Chapter 8).

For example, to expose the entity TimerEventImpl with the TimerEvent
interface, defined above, use the following IDLos:

expose entity TimerEventImpl with interface TimerEvent;

Interface properties

An interface can be tagged by properties that affect exposure. Also, an
interface can expose a singleton entity only if it is a singleton and a local
entity only if it is a local interface.

The following table shows the properties you can use in the definition of an
interface.

isAbstract (abstract in IDLos) Prohibits the interface from exposing an
entity (see “abstract” on page 65).

createaccess Permits and revokes permission to instiante
the exposed entity through the interface (see
“Access control” on page 65).

deleteaccess Permits and revokes permission to delete
instances of the exposed entity through the
interface (see “Access control” on page 65).

Chapter 2: Creating ObjectSwitch models
Interface

65

Setting interface properties To set interface properties in the Visual Design
Center, open the interface’s Class Specification dialog (see “Class
Specification dialog” on page 17).

In IDLos interface properties appear before the interface statement in square
bracket, for example,

[abstract]
interface TalkBack
{

oneway void respond(in string response);
};

abstract An interface marked with the abstract property cannot be used in an
exposes statement. Abstract interfaces define the operations which a client
package should both inherit and implement. In other words, abstract
interfaces define callbacks or notifiers.

Abstract interfaces may not contain attributes or typedefs.

“A big example” on page 93 contains an example of defining and using
abstract interfaces.

Access control To permit more control over how an entity is exposed, three
properties grant or revoke access to create, delete, or retrieve the extent of an
interface. In this example, a client can retrieve handles to all the Crosswalks
instantiated, but the client cannot create or delete any of them.

[

extentaccess Permits and revokes permission to access
the extent of the exposed entity through the
interface (see “Access control” on page 65).

singleton If an interface exposes a singleton, it must
also have the singleton property (see “single-
ton” on page 19).

local (IDLos only) If an interface exposes a local entity, it must
also have the local property (see “Local enti-
ties” on page 21 and “Local Interface” on
page 66)

66

Chapter 2: Creating ObjectSwitch models
Local Interface

createaccess=revoked,
deleteaccess=revoked,
extentaccess=granted

]
interface Crosswalk {};

In this example, new BankCustomers can be created. But for security, clients
cannot search through the existing customers, and they cannot delete any
customers.

[
createaccess=granted,
deleteaccess=revoked,
extentaccess=revoked

]
interface BankCustomer {};

Local Interface

To give a client of your package access to a local entity, you must provide
an interface. The local interface exposes the local entity. The contents of the
interface controls which operations are exposed.

To expose an operation, the local interface defines the same operation.

The following table shows the elements of a local entity that a local interface
can expose:

Operation Operation in the entity that the local inter-
face exposes.

Chapter 2: Creating ObjectSwitch models
Local Interface

67

Visual Design Center

The Visual Design Center represents a local interface as a class with
stereotype kabLocalInterface. A local interface has three sections: the header at
the top(with stereotype and local interface label, the attribute section in the
middle (which is always empty), and the operation section at the bottom (see
the figure below).

To add a new local interface to a module or package:

1 click on the interface icon

2 click somewhere in the package or module diagram

3 open the local interface’s Class Specification dialog (see “Class Specifi-
cation dialog” on page 17)

4 select kabLocalInterface from the stereotype drop-down selection box

To expose a local entity with a local interface:

1 click on the realizes icon

2 click on the local entity you want to expose and while holding the mouse
button pressed, drag the cursor to the exposing local interface

Figure 28: Local Interface in
the Visual Design Center

TimerEvent

road : ::Traffic::Road

generate()

<<kabInterface>>

68

Chapter 2: Creating ObjectSwitch models
State machine

Once you have added a local interface to a module or package, you model its
operations and nested types in its Class Specification dialog (see “Class
Specification dialog” on page 17).

IDLos

Use the interface statement (A local interface is an interface tagged with the
local property (for syntax details, see"interface" in Chapter 8).

[local]
entity UtilitiesImpl
{

void who();
void whatis();

};
[local]
interface Utilities
{

void who();
void whatis();

};

To expose a local entity with a local interface, use the expose statement (for
syntax details, see "expose" in Chapter 8).

For example, to expose the entity UtilitiesImpl with the Utilities interface,
defined above, use the following IDLos:

expose entity UtilitiesImpl with interface Utilities;

State machine

State machines define the stages of an instance’s life as well as the
transitions between those stages. Use them when the instances of an entity
must perform duties in a certain order, or when an instance must wait for
certain signals before it can proceed. State machines are the best way to
manage asynchronous communication with another instance or with a
network protocol.

You can define a finite state machine for an entity. An action is executed as
an instance enters each state. There are no actions associated with the signals
or transitions. The actions are implemented in action statements using action
language (on action language, see Chapter 3).

Chapter 2: Creating ObjectSwitch models
State machine

69

The following table shows the modeling elements that you use to model an
entity’s state machine:

Visual Design Center

You model state machines in a Statechart diagram. You create a Statechart
diagram for an entity by right-clicking on the entity and selecting Sub
Diagrams > New Statechart Diagram. You open an exiting Statechart
Diagram by right-clicking on the entity and selecting the diagram name.

In a Statechart diagram you model a state machine by adding new states (see
“State”) and the transitions (see “Transition”) between them.

You can set the default state transition to either cannothappen or ignore using
the State Diagram Specification dialog. Right-click on the State Chart
Diagram and select ObjectSwitch State Diagram Specification.

State A condition or situation during the life of an
instance. An instance remains in a state
until it receives a signal.

Signal An event causing a state transition.

Transition A progression from one state to another, or
the same, state caused by a signal.

70

Chapter 2: Creating ObjectSwitch models
State machine

A complete state machine and the UML representation of it is shown in the
following figure.

IDLos

A state machine consists of a stateset statement and a group of transition
statements, within the scope of the entity.

The stateset statement specifies all the states valid for the entity as well as the
initial state and final states (for syntax details, see “stateset” in Chapter 2).

A transition statement specifies the from state and the to state as well as the
signal initiating the transition.

entity CarSensor
{

// attributes
attribute boolean carPresent;

// states
stateset
{

Initial,
CarPresent,
CarNotPresent

} = Initial;

Figure 29: State model for
car entity in sample model

Initial

<<kabInitial>>

CarPresent

event newCar/ ignore

CarNotPresent

event noCar/ ignore

noCar

newCar

newCar noCar

Chapter 2: Creating ObjectSwitch models
State

71

// signals
signal newCar();
signal noCar();

// transitions
transition Initial to CarPresent upon newCar;
transition Initial to CarNotPresent upon noCar;
transition CarPresent to CarNotPresent upon noCar;
transition CarNotPresent to CarPresent upon newCar;
transition CarPresent to ignore upon newCar;
transition CarNotPresent to ignore upon noCar;

};

State

You use states to model state machines (see “Module”). A state represents a
stage in the life of an instance. An instance stays in the same state until it
receives a signal causing it to tranistion to a different state.

There are two special types of states:

• initial state

• final state

There can only be one initial state. This is the state that an instance first
enters upon creation.

The state action for the initial state is executed following a transition back to
the initial state, but not when the object is created. Actions on create can be
expressed using create triggers—see “Entity trigger” on page 42.

There is no limit to the number of end states. When an instance enters an end
state, it ceases to exist; the runtime deletes the instance.

Actions You implement operations and states in action statements.

action ::Traffic::CarSensor::CarNotPresent
// arguments: None
{`

self.carPresent = false;
`};

72

Chapter 2: Creating ObjectSwitch models
State

Actions specify the name of an operation or a state. They can be defined
inside an entity, outside the entity, or even outside the package, so use a
scoped name when needed. The action language that implements the action
appears between the backquotes (‘) in IDLos. See Chapter 3 for a description
of the ObjectSwitch action language.

You must define an action statement for each operation and state. Although
empty actions are legitimate, forcing you to write them explicitly reminds
you to define an action where one is needed.

Everything between the backquotes is handled by a different parser from the
rest of IDLos. This is why the IDLos namespace does not have reserved
words from the action language, and vice-versa.

No parameter signature is required with the action statement..

Actions can be defined outside of packages so you can organize them into
separate files, if you choose.

Visual Design Center

There are three different state icons in the Statechart diagram toolbar:

• State

• Initial State

• End State (final)

However, you only use the State and End State icons. An End State in the
Visual Design Center corresponds to a state with the finished property of the
enclosing stateset in IDLos. If you have multiple end states, their names will
appear as comma-separated values for the finished property of the enclosing
stateset.

UML start state semantics are different from the Kabira initial state’s
semantics. UML start states are "pseudo states"; they cannot have events on
their outgoing transitions. Kabira initial states are like any other state (they
can have actions, events on outgoing transitions, and transitions incoming
and outgoing).

To add a state or final state:

1 click on the State or Final State icon in the toolbar

2 click somewhere in the Statechart diagram

Chapter 2: Creating ObjectSwitch models
Signal

73

To add an initial state, use a plain state with the <<kabInitial>> stereotype.

IDLos

The stateset statement defines all the states for an entity, as well as the initial
and final states (for syntax details, see “stateset” in Chapter 2).

The initial state is the state that appears after the equals sign in the stateset
statement.

finished This property designates the terminal state(s) in a stateset. It requires
a list of states, for example:

[finished = {Retired, Lost}]
stateset {Made, Used, Retired, Lost} = Made;

In this example, ObjectSwitch automatically deletes the object after the
Retired or Lost state finishes executing its action.

Signal

A signal causes a transition to a new state.

Only in parameters are allowed. A signal does not have a raises clause.

Visual Design Center [description not supplied in this edition — tracked as
issue 020328-000009]

IDLos The signal statement defines the name of the signal and an optional list
of parameters.

signal newCar();
signal noCar();
signal carLost(in string registration);

74

Chapter 2: Creating ObjectSwitch models
Transition

Transition

A transition specifies that an instance moves from one state to another when
a certain signal is received. in the source state will perform certain specified
actions and enter the destination state when a specified event occurs or when
certain conditions are satisfied. A state transition is a relationship between
two states, two activities, or between an activity and a state.

transition Initial to CarPresent upon newCar;
transition Initial to CarNotPresent upon noCar;
transition CarPresent to CarNotPresent upon noCar;
transition CarNotPresent to CarPresent upon newCar;

The first transition above says that if an object is in the Initial state and the
newCar signal is received, transition to the CarPresent state and execute its
action.

If a signal is received, and there is no transition from the current state for
that signal, an ObjectSwitch system exception is thrown by default. This
causes the engine to exit with an error. You can explicitly express the default
behavior by specifying a transition to cannothappen.

transition CarPresent to cannothappen upon lostCar;

The transition cannothappen (whether expressed explicitly or by default)
indicates a condition that should never be possible in your model. Do not use
this transition for expected error conditions.

To ignore signals when you are in a certain state, specify a transition to
ignore.

transition CarPresent to ignore upon newCar;
transition CarNotPresent to ignore upon noCar;

If two or more transitions to the same state occur upon different signals,
those signals must all have the same parameter signature.

To relate

[description not supplied in this edition — tracked as issue 020328-000009]

entity TrafficSignal
{

oneway void regForMaintenance(in Intersection i);
oneway void cancelMaintenance(in Intersection i);

};
entity Intersection

Chapter 2: Creating ObjectSwitch models
Inheritance

75

{
};
relationship TrafficSignalInstallation
{

// roles
role Intersection controlledBy 0..* TrafficSignal;
role TrafficSignal installedAt 1..1 Intersection;

// triggers
trigger TrafficSignal::regForMaintenance
upon relate installedAt;
trigger TrafficSignal::cancelMaintenance
upon unrelate installedAt;

};

Inheritance

Like most object-oriented languages, ObjectSwitch supports inheritance.
This section describes how inheritance works in ObjectSwitch and discusses

• Entity inheritance

• Operations

• Interface inheritance

Entity inheritance

ObjectSwitch entities may inherit from other entities. This means that the
subtype can share all the features of the supertype entity. The subtype
inherits from the supertype.

The following constraints apply:

• a subtype may have only one supertype

• an entity may inherit from another entity if they are in the same package

• local entities may inherit only from other local entities

76

Chapter 2: Creating ObjectSwitch models
Inheritance

What do subtypes inherit? A subtype inherits these items:

• attributes

• operations; operations will be discussed in detail below

• roles; any role you can navigate, relate or unrelate on a supertype, you can
navigate, relate or unrelate through a subtype

• state machines; subtypes inherit all signals, transitions; all states and their
actions; a subtype cannot override the state machine of its supertype

• keys

• lifecycle (create/delete) and attribute triggers

What can subtypes add? A subtype may add:

• attributes, with triggers if desired

• keys

• operations, both virtual and non-virtual

• a state machine, if it did not inherit one; you cannot add to an existing state
machine in a subtype; the state machine must be defined entirely within
one entity.

Visual Design Center The Visual Design Center represents inheritance with a
solid line from the subtype to the supertype. The tip of the line is a large
hollow triangle pointing to the supertype.

Chapter 2: Creating ObjectSwitch models
Inheritance

77

For example, in the following model the subtype RoadSide1 inherits from the
supertype SideOfRoad (see the figure below). This means that all instances of
RoadSide1 will share the attribute direction and its accessors. It also means that
anywhere you can use the type SideOfRoad, you can use the type RoadSide1.

To add an inheritance relationship between two entities (or interfaces):

1 click on the Generalization icon in the toolbar

2 click an hold the mouse on the subtype

3 pull the mouse to the supertype and release

IDLos In IDLos use the colon to establish an inheritance relationship
between two entities: subtype : supertype.

Here is the IDLos for the model defined in Figure 30:

entity SideOfRoad
{

attribute SideDirection direction;
};
entity RoadSide1 : SideOfRoad
{
};

Figure 30: RoadSide1
inherits from SideOfRoad

RoadSide1

<<kabEntity>>

SideOfRoad

direction : SideDirection

<<kabEntity>>

78

Chapter 2: Creating ObjectSwitch models
Inheritance

Shadow types Nested types defined in a supertype are accessible to a subtype.
Consider the model where struct B is defined within the scope of entity A;
entity C inherits from entity A; struct B is accessible inside entity C, for
example, as a type in an attribute definition of b.

This situation is represented in the following model

Here is the same model in IDLos:

entity A
{

struct B
{

long c;
};

};
entity C : A
{

attribute B b;
};

The example shows how entity C can use type B without any scoped name.
These inherited, nested types are called shadow types.

Figure 31: Inheritance and
shadow types

A

<<kabEntity>>
B

c : long

(from A)

<<kabStruct>>

C

b : B

<<kabEntity>>

Chapter 2: Creating ObjectSwitch models
Inheritance

79

Operations

All regular (non-virtual) operations are inherited: you can invoke the
supertype’s operation through the subtype. The supertype’s implementation
of the operation will be executed.

In the next model the entity Supertype has an operation named greeting. The
implementation of greeting is to print “Hello” to stdout.

printf("Hello\n");

The entity Subtype inherits from Supertype, as shown in the figure below.

There is a third entity in the model called Startup that has an operation called
init. init is a lifecycle operation that the runtime invokes when the component
is initialized. The implementation of init is to create an instance of Subtype
and invoke the operation greeting on the instance.

declare Subtype sub;
create sub;
sub.greeting();

Invoking greeting on the instance of Subtype sends “Hello” to stdout.

Figure 32: Supertype and
Subtype

Supertype

greeting()

<<kabEntity>>

Subtype

<<kabEntity>>

Startup

init()

<<kabLocalEntity>>

80

Chapter 2: Creating ObjectSwitch models
Inheritance

Here is the same model defined in IDLos:

// define the supertype
entity Supertype
{

void greeting();
action greeting
{‘

printf("Hello\n");
‘};

};

// define the subtype
entity Subtype: Supertype
{};

// A local entity to start the engine
[local] entity Startup
{

[initialize]
void init();

};
action Startup::init
{‘

// invoke through the subtype
declare Subtype sub;
create sub;
sub.greeting();

‘};

Redefining operations When an inherited operation is redefined in a subtype,
ObjectSwitch normally invokes either the supertype’s or subtype’s
implementation, depending on the type of the object handle.

Chapter 2: Creating ObjectSwitch models
Inheritance

81

In the following model, the operation parting is defined in the supertype and
its subtype, as shown in the figure below.

In the Supertype, parting sends “Bye ...” to stdout and in Subtype parting sends
“Cheers ...”.

init declares an object handle of type Supertype and one of type Subtype. It
creates an instance of Subtype and assigns it to the Supertype. Finally, it
invokes parting first on the supertype instance an then on the subtype
instance.

Here is the action language implementation of init:

// Create subtype
declare Subtype sub;
create sub;
// Make a supertype handle to the subtyped object
declare Supertype super;
super = sub; // these now refer to the same object

// Invoke via supertype and subtype
super.parting();
sub.parting();

The result of invoking init is “Bye...Cheers...”. Calling super.parting() prints
“Bye...”, and then calling sub.parting() prints “Cheers...”.

Figure 33: Supertype and
Subtype

Supertype

parting()

<<kabEntity>>

Subtype

parting()

<<kabEntity>>

Startup

init()

<<kabLocalEntity>>

82

Chapter 2: Creating ObjectSwitch models
Inheritance

Here is the same model in IDLos:

// define the supertype
entity Supertype
{

void parting();
action parting
{‘ printf("Bye..."); ‘};

};

// define the subtype
entity Subtype: Supertype
{

void parting();
action parting
{‘ printf("Cheers...");‘};

};
[local] entity Startup
{

[initialize]
void init();

};

action Startup::init
{‘

// Create subtype
declare Subtype sub;
create sub;

// Make a supertype handle to the subtyped object
declare Supertype super;
super = sub; // these now refer to the same object

// Invoke via supertype and subtype
super.parting();
sub.parting();

‘};

When executed, this model prints “Bye...Cheers...”. Calling super.parting()
prints “Bye...”, and then calling sub.parting() prints “Cheers...”.

Virtual operations and polymorphic dispatch Sometimes you don’t want to execute
the supertype’s implementation—you want to use an object as a supertype,
but when you call an operation, you want to invoke the subtype
implementation that corresponds to the actual object. This is called
polymorphism.

Chapter 2: Creating ObjectSwitch models
Inheritance

83

IDLos’s virtual property provides polymorphic dispatching of ObjectSwitch
operations to the correct subtype implementation. The following example
shows how virtual changes the way operations are dispatched. The preceding
example printed “Bye...Cheers...” but this one prints “Cheers...Cheers”
because it uses virtual.

The parting operation is declared virtual in the Supertype entity, as shown in
the figure below.

Now when init executes it invokes the subtype’s implementation twice
because both object handles reference a subtype object.

In IDLos, you make the same change to the model by prepending the parting
operation definition in the Supertype entity with [virtual], as shown below:

// define the supertype
entity Supertype
{

[virtual] void parting();
action parting
{‘ printf("Bye\n"); ‘};

};

Figure 34: parting becomes
virtual

84

Chapter 2: Creating ObjectSwitch models
Inheritance

There is no “pure virtual” in IDLos. When you mark an operation virtual,
you still need to implement it in the supertype. You also must implement the
operation for all subtypes.

Also, local entities cannot have virtual operations.

You can use the virtual property at any level of an inheritance hierarchy, but
you can’t use it again further down the hierarchy.

In the following example (see the figure below), anOp is virtual in Middle and
a polymorphic dispatch will occur on instance handles of Middle and Bottom,
but not Top.

Figure 35:

Top

anOp()

<<kabEntity>>

Middle

anOp()

<<kabEntity>>

Bottom

anOp()

<<kabEntity>>

Chapter 2: Creating ObjectSwitch models
Inheritance

85

Here is the same model in IDLos, which shows the virtual property:

entity Top
{

void anOp();
};
entity Middle : Top
{

[virtual]
void anOp();

};
entity Bottom: Middle
{

void anOp();
};

Adding an entity Floor that inherits from Bottom and then declaring anOp as
virtual in Floor will create an error, since virtual has already been specified on
the Middle level.

Don’t try to make a subtype call the supertype implementation of a virtual
operation. The supertype always invokes the subtype’s implementation. This
has important consequences: for the example above, the following
implementation will cause an endless loop at runtime.

action Bottom::anOp
{‘

declare Middle mid;
mid = self;// upcast
mid.anOp(); // will recurse forever

‘};

86

Chapter 2: Creating ObjectSwitch models
Inheritance

Instead of trying to invoke the virtual operation in the base entity directly,
you can make it easy for subtypes to use the supertype’s implementation
using the following style:

entity Base
{

string getDefaultString();
[virtual] string getString();

};
entity Child : Base
{

string getString();
action getString
{‘

declare Base base;
base = self;
return base.getDefaultString();

‘};
};

In this way, the base class provides both a default implementation and an
operation that must be overridden by subtypes.

Interface inheritance

Interfaces can inherit from other interfaces in the same package or in other
packages. The subtype inherits all interface definitions from the supertype.

Generally, the following rules apply to new definitions. The interface
subtype can:

• introduce new types

• expose additional attributes

• expose additional operations

• restrict control access, but cannot grant more

Operations and attributes must expose an entity that is a subtype of the entity
exposed by the supertype (where an entity is considered a subtype of itself)

Chapter 2: Creating ObjectSwitch models
Inheritance

87

Inheritance within a package When the supertype and subtype interfaces are in
the same package, the subtype interface must expose an entity that is a
subtype of the entity exposed by the supertype interface, where an entity is
considered a subtype of itself.

Figure 36: Interface
inheritance

Parent

anOp()
aVirtualOp()

<<kabEntity>>

Child

aVirtualOp()

<<kabEntity>>

ParentInterface

anOp()
aVirtualOp()

<<kabInterface>>>>

ChildInterface

aVirtualOp()

<<kabInterface>>>>

88

Chapter 2: Creating ObjectSwitch models
Namespaces

The model illustrated in Figure 36 is expressed in IDLos as follows:

package myPackage
{

entity Parent
{

void anOp ();
[virtual]
void aVirtualOp ();

};
entity Child: Parent
{

void aVirtualOp ();
};
interface ParentInterface
{

void anOp ();
[virtual]
void aVirtualOp ();

};

interface ChildInterface: ParentInterface
{

void aVirtualOp ();
};
expose entity Parent with interface ParentInterface;
expose entity Child with interface ChildInterface;

};

Cross-package inheritance When the supertype and subtype interfaces are in
different packages, ObjectSwitch cannot validate operation redeclarations
through the exposed entities; in ObjectSwitch cross-package inheritance
relationships do not exist between entities. For this reason, it is illegal to
redefine or redeclare an operation in the subtype.

Namespaces

ObjectSwitch namespaces are hierarchical, with packages forming the
outermost namespace. Within a package, you can use modules to impose
additional namespaces when needed. Within packages and modules, many
ObjectSwitch elements define a namespace.

Chapter 2: Creating ObjectSwitch models
Namespaces

89

All identifiers in a namespace must be unique. For example, an entity
defines a namespace, so it cannot contain an operation and an attribute with
the same name.

Modules

Modules provide extra namespaces within a package if needed.

Modules can be nested. A module may contain entities, interfaces, enums,
structs, exceptions, typedefs, nested modules, relationships, actions, and
exposes statements.

When a module is declared more than once in IDLos, the module is re-
opened and modified on each subsequent declaration. More information will
be added to its definition each time that the module name appears in the
model.

Model elements defining namespaces

Package and module are not the only containers that form a namespace. The
following table includes all the IDLos language elements that form a
namespace.

Scoped names

In IDLos and action language, to identify an element in its namespace, use
the scoped name. The scoped name is formed by listing each namespace of
the hierarchy, separated by a pair of colons (::).

This namespace... ...may contain these namespaces

package module, entity, interface, struct, exception, relationship

module module, entity, interface, struct, exception, relationship

interface struct, operation, exception

entity struct, operation, exception, signal

struct struct

exception struct

operation

signal

relationship role

90

Chapter 2: Creating ObjectSwitch models
Namespaces

For example, consider the model in the following example:

Here is the same model in IDLos:

package A
{

module B
{

typedef long X;
entity C
{

attribute long d;
void e();

};
};

};

To refer to the attribute in the example, you would say

::A::B::C::d

The leading (::) mean the name is globally scoped. Globally scoped names
are like absolute addresses. They tell IDLos to start resolving the name
outside of any package scope (namespace).

Figure 37: Namespace
example

A

<<kabPackage>>

B

<<kabModule>>

X

 : long

<<kabTypedef>>>>
C

d : long

e()

<<kabEntity>>

Chapter 2: Creating ObjectSwitch models
Namespaces

91

A relative address is partially scoped. Partially scoped names are resolved
starting from where they are used. For example, when you implement
operation ::A::B::C::e, you are in e’s namespace. Here are three ways to refer
to the typedef X from within such an action:

action ::A::B::C::e
{‘

declare ::A::B::X aa; // globally scoped
declare A::B::X bb; // partially scoped
declare B::X cc; // partially scoped
declare X dd; // unscoped

‘};

A partially scoped name is searched for outwards from each enclosing
scope. So in the example, the second declaration (A::B::X) starts a search in
namespace e. Within e, it does not see a namespace or name A. So it goes
outward to the next namespace, C. Within C, it does not see a namespace or
name A, so it goes outward to B. Within B, it does not see an A. Out again
to the global scope. In the global scope, it sees A. Within A, it sees B.
Within B it sees X. The name is resolved.

Ordering and forward declarations in IDLos

IDLos is a one-pass parser. This means the parser must see the definition of
something before it is used. This is true even within an entity. For instance,
you must define the signals before they are used in transition statements.

Entities and interfaces can be forward declared (this is explained in “A big
example”). Forward declarations satisfy the parser: having seen the name,
the parser lets you use the entity or interface.

// forward declares
entity A;
entity B;
interface C;

relationship R
{

role A owns 0..* B;
};
entity A
{

attribute C c;
attribute D d; // error! D not defined yet!

};
typedef long D;

92

Chapter 2: Creating ObjectSwitch models
Namespaces

The action language is not parsed until after the entire model is loaded into
the Design Center and you request a build. So you don’t have to worry if the
types you refer to in your action are defined below or above the action in the
IDLos file. Once they have all been loaded, the types will already be in the
Design Center model sources and will be available to the entire model.

Chapter 2: Creating ObjectSwitch models
A big example

93

A big example

Here is a larger example model. It is an example of the notifier pattern. Use
this pattern when you define “callbacks” or “notifiers” in your server
component. It demonstrates the use of interfaces, inheritance and exposure:

• An abstract interface is defined in the server package.

• An interface in the client package inherits from the abstract interface.

• The subtype interface in the client package exposes an entity in the client.

At runtime the server can access a callback in the client through the abstract
interface.

The example defines a server package and a client package. The server
listens for a message from the client; if the server receives “Hello” then it
replies “Bonjour”, and replies “I don’t understand” to any other message.
When the client receives the server’s response, it prints “Ok” or “Not Ok”.

Visual Design Center

The following graphic shows the HelloWorldSever package in the Visual
Design Center.

The interface Listener exposes the operation listen in the entity ListenImpl.

Figure 38: HelloWorldServer

ListenerImpl

listen(message : string, tbk : TalkBack) : void

<<kabEntity>>

Listener

listen(message : string, tbk : TalkBack) : void

<<kabInterface>>

Realize Class Listener TalkBack

respond(response : string) : void

<<kabInterface>>

94

Chapter 2: Creating ObjectSwitch models
A big example

The following action language implements the operation listen:

if (message == "Hello")
{

tbk.respond(response:"Bonjour");
}
else
{

tbl.respond(response:"Bonjour");
}

Also, the abstract interface TalkBack exposes the operation respond.

The following graphic show the HelloWorldClient in the Visual Design Center.

The interface TalkBackSub inherits from the abstract interface TalkBack defined
in the HelloWorldServer package and exposes the entity TalkBackImpl.

The operation init in the local entity Startup is the lifecycle operation that
kicks off the application. It creates an instance of TalkBackSub and Listener
from the server package and invokes listen on the Listener instance passing the
instance of TalkBackSub as the callback object.

The follow action language is the implementation of init:

declare ::HelloWorldServer::Listner lis;
declare TalkBackSub tks;

Figure 39:
HelloWorldCclient

TalkBackSub

<<kabInterface>>>>

TalkBackImpl

<<kabEntity>>

Realize Class TalkBackSub

Startup

init() : void

<<kabLocalEntity>>

TalkBack

respond(response : string) : void

(from HelloWorldServer)

<<kabInterface>>

Chapter 2: Creating ObjectSwitch models
A big example

95

create lis;
create tks;
lis.listen(message:"Hello", tbk:tks);

Through the inherited abstract interface TalkBack, TalkBackSub exposes the
signal respond defined in TalkBackImpl. The graphic below shows the state
machine for the entity TalkBackImpl.

When an instance of TalkBackImpl receives the signal respond, it invokes the
action language defined for the state Heard.

The following action language implements the state Heard:

if (response == "Bonjour")
{

printf("Ok\n");
}
else
{

printf("Not Ok\n");
}

IDLos

Here is the IDLos for the same model:

[annotation= "This server says 'Bonjour' when clients say 'Hello'"]
package HelloWorldServer

Figure 40: TalkBackImpl
state machine

Initial

<<kabInitial>>

Heard

respond(in string response)

respond(in string response)

96

Chapter 2: Creating ObjectSwitch models
A big example

{
// forward declares
interface TalkBack;

[annotation= "This entity does all the work."]
entity ListenerImpl
{

[
annotation= "The TalkBack reference must be passed in"
" by the client. The server uses it to respond."

]
oneway void listen(in string message, in TalkBack tbk);

};

[
annotation= "This interface exposes the ListenerImpl”

“entity. It allows create and delete access”
“so that clients don’t need a factory.",

createaccess=granted,
deleteaccess=granted

]
interface Listener
{

oneway void listen(in string message, in TalkBack tbk);
};
expose entity ListenerImpl with interface Listener;

[annotation=
"This is the notifier. Because clients inherit from ”
“this interface (and implement it), it must be “
“abstract. We also grant access, because clients’ “
“subtype of this notifier will need it",

createaccess=granted,
deleteaccess=granted,
abstract

]
interface TalkBack
{

oneway void respond(in string response);
};

action ListenerImpl::listen
{‘

if (message == “Hello”)
{

tbk.respond(response:”Bonjour”);
}
else

Chapter 2: Creating ObjectSwitch models
A big example

97

{
tbk.respond(response:”I don’t understand”);

}
‘};

};

//
// Now the client.
//
package HelloWorldClient
{

[
annotation=

"Let’s implement the notifier. This is the key to”
“the notifier pattern: inheriting the abstract”
“interface, and implementing the derived interface"
"in an entity. No operation declaration is needed in”
“the TalkBackSub - it is inherited."

]
interface TalkBackSub : ::HelloWorldServer::TalkBack
{};

[annotation=”Process the response in a small state machine."]
entity TalkBackImpl
{

signal respond(in string response);
stateset {Initial, Heard} = Initial;
transition Initial to Heard upon respond;
transition Heard to Heard upon respond;

[annotation="Implements the state Heard."]
action Heard
{‘

if (response == "Bonjour")
{

printf("Ok\n");
}
else
{

printf("Not Ok\n");
}

‘};
};
expose entity TalkBackImpl with interface TalkBackSub;

[
annotation=

"The operation in this native entity with the engine"
"event property starts the client in motion.",

98

Chapter 2: Creating ObjectSwitch models
A big example

local
]
entity StaRtup
{

[initialize]
void init();
action init
{‘

declare ::HelloWorldServer::Listner lis;

// It is important to instantiate a TalkBackSub,
// rather than a TalkBack. In the type
// hierarchy, TalkBackSub is both a TalkBack
// and a TalkBackImpl.
declare TalkBackSub tks;
create lis;
create tks;
lis.listen(message:"Hello", tbk:tks);

‘};
};

};

The next chapter explains how you describe state or operation behavior using action language.

99

3 Action language

This chapter describes the ObjectSwitch action language. The action
language is used within action statements in IDLos. IDLos is the
ObjectSwitch modeling language discussed in Chapter 2. Before reading this
chapter, you should already be familiar with object-oriented software
development, and you should have read the Overview and Chapter 2 of this
book.

Overview

In ObjectSwitch, most of your application’s behavior will be implemented
by action language statements.

Action language and IDLos Action language is the dynamic counterpart to the
IDLos structural modeling language. You use IDLos to design the entities,
relationships, and states of your model. You use action language to define
what happens during these states (the state actions) and what happens when
the operations are invoked. You can also call C++ functions from your
action language, or even include C++ code in-line.

Why is there an action language?

Suppose you have defined your entity model and your state model, using
either IDLos or a third-party UML tool such as Rational Rose. This model
describes a large part of your application. But you still need to describe what
happens in each state, and what your operations do.

100

Chapter 3: Action language
Some basic features of the action language

Action language lets you specify actions that implement the operations and
state behavior of your model. But unlike regular programming languages,
action language lets you specify this behavior at a very high level of
abstraction. Instead of dealing with memory allocation and index tables, you
do things like selecting objects or traversing relationships.

Action language

Modeling in ObjectSwitch is at a very high level of abstraction, higher than
traditional object-oriented languages. For instance, you can define
relationships between objects. You can define object state machines to
handle asynchronous protocols. You can write queries to find objects, or to
filter extents.

However, object models are not enough to implement an application, so
ObjectSwitch has an action language. You implement your models at a high
level of abstraction using action language. (See)

What is action language like?

The ObjectSwitch action language uses a similar syntax to that of C++, Java,
and Visual Basic. If you know one of these languages, many features of the
action language are already familiar to you. But action language is simpler,
because of its higher level of abstraction. ObjectSwitch action language
looks like this:

declare short currentCall;
for(currentcall=0; currentCall<maxCalls; currentCall++)
{

if(thisCustomer.callsToday == 0)
{

break;
}
thisCustomer.enterServiceCall(currentCall);

}

Some basic features of the action language

This section describes a variety of basic features of action language. Object
manipulation is described in the following section.

Chapter 3: Action language
Some basic features of the action language

101

Keywords There is a section on each action language statement at the end of
this chapter. Each of those statements is a keyword in action language.
Additionally, all C++ keywords are also reserved in action language:

Preprocessor directives Like IDLos, action language supports the #include
preprocessor directive. But action language also supports the #pragma include
directive, which includes a file after code generation and before C++
compilation. This allows you to include C++ header files for external
libraries:

#pragma include <myCplusplusHeaders.h>
someCplusplusFunction();

Variables

Declaration Variable declarations define the name and type of a local
variable. You must declare action language variables before using them:

declare type name;

You can also declare variables with initial values, or declare them as
constants:

asm for static_cast
auto friend struct
bool goto switch
break if template
case inline this
catch int throw
char long true
class mutable try
const namespace typedef
const_cast new typeid
continue operator typename
default private union
delete protected unsigned
do public using
double register virtual
dynamic_cast reinterpret_cast void
else return volatile
enum short wchar_t
explicit signed while
extern sizeof
false static

102

Chapter 3: Action language
Some basic features of the action language

declare long x = 0; // declaration with initial value
declare const long x = 0; // declaration of a constant

Strings can be declared as both bounded and unbounded.

//
// Declare an unbounded string
//
declare string unboundedString;

//
// Declare a bounded string of 100 bytes
//
declare string < 100 > boundedString;

In state actions, action language variables must not have the same name as
parameters to the signal(s) that transition to that state. Similarly, where an
action implements an operation, action language variables must not have the
same name as parameters to the operation. For example:

signal cursed (in long howManyYears);
transition alive to zombie upon cursed;
action zombie
{‘

declare long howManyYears; // invalid! Is parameter name
‘};

You can also include C++ variable declarations in your action language.
This lets you use variable types not provided by the action language.
However, these types may be incompatible with IDLos types and the auditor
cannot check them. For example:

action ::adventure::xyzzy
{`

declare longlongVar1;
long longVar2;
struct StatstatBuf;

longVar1 = 17;
// legal, since the types are compatible
longVar2 = longVar1;

// Type mismatch here, but the auditor can’t see it.
// Instead the C++ compiler will generate an error
// and that is harder for the developer to deal with
statBuf = longVar2;

}`

Chapter 3: Action language
Some basic features of the action language

103

Scope and lifetime When a variable is declared in an action; its scope is simply
the scope of that action. When the action is completed, the variable ceases to
exist:

action oneAction
{‘

declare long myVariable;
myVariable = 5;

‘};
action otherAction
{‘

declare long anotherVariable;
anotherVariable = myVariable;
// that was illegal: “myVariable” is not in this scope

‘};

Code blocks form an inner scope. When a variable is declared within an
action; its scope is the code block itself. When the code block is finished, the
variable ceases to exist:

declare long myOuterVar;
while (x > 0)
{

declare long myInnerVar;
// do something

}
myOuterVar = myInnerVar; // illegal - out of scope

Also, it is illegal to redefine a variable within an inner code block:

declare long myVar;
while (x > 0)
{

declare long myVar; // illegal - redeclared in scope
...

}

Accessing signal parameters from a state action In a state action, you can access
parameters to the signal that caused the transition. For example:

signal cursed (in long howManyYears);
transition alive to zombie upon cursed;
action zombie
{‘

declare long zTime;
for(zTime=0; zTime < howManyYears; zTime++)
{

// be a zombie for another year...
}

104

Chapter 3: Action language
Some basic features of the action language

‘};

Object references You can declare a variable using the name of an entity in the
package. This creates an empty object reference (also called a handle) that
you can create or assign objects to:

declare
{

Customer thisCustomer;
Customer thatCustomer;

}
create thisCustomer; // create a new object
thatCustomer=thisCustomer;
// thisCustomer and thatCustomer refer to the same object
// This assigned an object reference, is not a "deep" copy

Manipulating data

Assignment Assignment statements give values to a variety of expressions in
action language. They can contain:

• declared variables
• literals
• attributes on declared objects
• operations on declared objects
• return values from operations on declared objects

For example:

myVariable = 3;
someObject.someAttribute = myVariable + 1;

The equals sign (=) in an assignment statement indicates assignment, not
equality. Equality or equivalence in action language are indicated by a
double equals sign (==).

Chapter 3: Action language
Some basic features of the action language

105

Arithmetic The action language has the following simple arithmetic
operators, shown here in descending order of precedence:

The << and >> operators can also be used for external C++ streams; they are
passed through to the C++ compiler so that you can do things like:

extern ostream cout;
cout << "Hello World" << endl;

You can use parentheses in expressions to group items together.

1 + 2 * 4 // yields 9
(1 + 2) * 4 // yields 12

The following section describes all the action language operators.

Operators Unary and binary operators supported on fundamental IDLos types
are shown in the following table.

Operator Meaning

* Multiply

/ Divide

% Modulus (remainder after division)

+ Add

- Subtract

<< >> Bitwise left or right shift, respectively.

& Bitwise and

^ Bitwise complement

| Bitwise or

operators operand type description

true
false
empty

boolean Literals

! boolean Not

&&
||

boolean Boolean AND
Boolean OR

106

Chapter 3: Action language
Some basic features of the action language

= boolean, char, enum, long, short,
unsigned long, unsigned long long,
unsigned short, float, double,
string, octet

Assignment

< > <= >= char, float, double Numeric comparison

< > <= >= string Lexographic comparison

== boolean, char, enum, long, short,
unsigned long, unsigned long long,
unsigned short, float, double,
string, octet

Equality/equivalence compare.

Note: enum operands must be the
same type.

+ - * / % <<
>>

float, double, long, short, unsigned
long, unsigned long long, unsigned
short

Add, subtract, multiply, divide,
modulus, shift left, shift right

+ string Concatenate

+= -= *=
/= %= ^=
|= &=

These assignment operators perform both an arithmetic operation (or
string concatenation, for +=) as in the descriptions above, together with
an assignment. You use these operators anywhere you can use the ordi-
nary assignment operator...

<= => any Copy to or from an any. These are
the only operators supported for
the any data type.

operators operand type description

Chapter 3: Action language
Some basic features of the action language

107

String operations In addition to the concatenation (+) and lexigraphical
comparison operators, ObjectSwitch strings have the following operations
built in. String indexes begin at character zero. Note that trim, remove, pad,
insertChar, and insertString (and assignment) alter the underlying string; all
other string operations return a new string.

operators description

substring(in long start, in long end) Returns a substring of the string, bounded
by start and end, inclusive. For example:

s1 = "01234567890123456789";
s2 = s1.substring(3, 7);

Now s2 contains “34567”.

See the following section "substring
errors" for start and end boundary errors.

trim() Returns the string with any leading and
trailing whitespace removed.

toupper() Returns the string as all uppercase.

tolower() Returns the string as all lowercase.

getCString() Returns the string as a C-style char[]. Use-
ful for printf statements and other places
where a C string is required.

length An attribute (not an operation!) containing
the number of characters in the string.

remove(in long start, in long end) Removes characters from the string from
start to end, inclusive. For example:

s1 = "01234567890123456789";

s1.remove(3, 7);

Now s1 contains “012890123456789”.

pad(in long len, in char padchar) Appends the character padchar to the
string to make the string len characters
long.

insertChar(in long pos, in char data) Inserts the character data into the string at
the position pos.

108

Chapter 3: Action language
Some basic features of the action language

String operations may be performed on strings you declare in action
language, but not on string attributes. You must copy the attribute and
manipulate the copy. When you’re done, you can assign the copy back to the
string attribute.

You can construct a string from a char[] or concatenate a char[] to a string,
but you cannot concatenate two char[]. Some examples:

declare string s;
declare string w = " world";
declare char x[100];
sprintf(x, "hello");

s = x;
s += x; // All of these are ok.
s = x + w;

s = x + " world"; // This fails, since x is not a string

substring errors The function substring throws an exception in cases where start
> end, start < 0 or end >= length. Failure for any of these three tests will
cause the exception, ExceptionArrayBounds, to be thrown.

Implicit conversion between string and numeric types

When you assign a string to a number or vice versa, ObjectSwitch
automatically converts the value if possible, as described in the following
paragraphs.

Assigning a number to a string When you assign a numeric type to a string, the
value is implicitly converted to a string representation:

insertString(in long pos, in string
data)

Inserts the string data into the string at
position pos.

stringToLong(in NumericBase base) Converts the value in the string into a
number. Values for NumericBase are:

SWString::Base10, SWString::Base16 and
SWString::Base8. Note: you probably
want to use Base10. This is not the
default. (Base8 is the default.)

operators description

Chapter 3: Action language
Some basic features of the action language

109

declare long x = 123;
declare string myString;
myString = x; // myString is now "123"

However, you cannot concatenate a numeric type to a string.

declare string str = "the number " + 5; // str is now “umber “

This moves the pointer in the string “the number “five places to the right
before performing the string assignment. To concatenate a converted
numeric type to a string, assign the numeric type to a string variable first.

declare string x;
x = 5;
declare string str = “the number “ + x; // str is “the number 5”

Assigning a string to a number When you assign a string to a numeric type, the
string is interpreted as a numeric constant and implicitly converted to a
number, if possible. The constant may be decimal, octal, or Hexadecimal,
and may be preceded by a + or - sign.

declare string myString = "This is a string";
declare long myLong = 0;
myString = "4";
myLong = myString; // myLong is now 4, not 0

errors If the string does not contain a valid constant, ObjectSwitch throws an
ExceptionDataError exception, which your model can catch. If you don’t
catch this exception, the engine will exit.

type of constant syntax

decimal constant begins with a non-zero digit, and consists of a
sequence of decimal digits

octal constant begins with 0 followed by a sequence of the dig-
its 0 to 7 only

hexadecimal
constant

consists of the prefix 0x or 0X followed by a
sequence of the decimal digits and letters a..f
(lower- or uppercase) corresponding to the val-
ues 10..15

110

Chapter 3: Action language
Control structures

Name spaces

Action language operates within the name spaces defined in the enclosing
IDLos model. Identifiers in action language must be scoped according to the
IDLos scoping rules, which precisely match those of IDL. See Chapter 2 for
a discussion of IDLos scoping rules.

Data types

Action language uses the same fundamental types as IDLos does. You
declare a variable using the action language declare statement.

Your model’s action language can use any built-in type, or any user-defined
type in the package where the action language appears. Types in other
packages may also be used by qualifying them explicitly, as in:

packageName::typeName

Control structures

Loops

The action language provides three ways to iterate over a set of statements:
for, for...in, and while.

for The for statement lets you loop using a range of values. It is identical to
the C++ for statement:

for(x=0; x<myLimit; x++)
{

// do something
}

for...in This statement iterates over a set of objects, using a different object
each time through the loop:

for thisCustomer in setOfCustomers
{

// do something
}

Chapter 3: Action language
Manipulating objects

111

The for...in statement may iterate over the instances of an extent or over the
object in a relationship:

• extent—if the name of an entity appears after the in keyword, then the loop
iterates over the extent (all the instances) of that entity

• relationship—if a relationship navigation appears after the in keyword, then
the loop iterates over the related objects

while This statement loops as long as a given expression remains true. The
expression is evaluated at the beginning of each loop:

while(money > 0)
{

// spend some money
}

Branches

The action language supports if, else, and else if constructs:

if(thisCustomer.balance < thisCustomer.creditLimit)
{

// sell to the customer
}
else if(thisCustomer.alreadyWarned)
{

// deactivate account
}
else
{

// warn customer
}

Manipulating objects

This section introduces the principal ways that you can manipulate objects.
It covers creating and deleting objects, handling object references, accessing
the operations and attributes of objects, and using relationships.

112

Chapter 3: Action language
Manipulating objects

Creating objects

To create a new object in action language, first declare a variable of the
object’s type (see “Object references” on page 104) and then use it with the
create statement:

declare Customer someCustomer;
create someCustomer;

This creates a new Customer object in the local shared memory, which the
handle someCustomer refers to. When the current action finishes, someCustomer
will no longer exist (see “Scope and lifetime” on page 103) but the new
object will remain in shared memory. The object remains even when the
handle to it no longer exists. You can locate the object again by selecting
from the Customer extent or via any objects that you relate it to (see
“Relating and unrelating objects” on page 115).

With initial values You can also create an object with initial values assigned to
some or all of its attributes. For example, you can create the customer and
provide an initial value:

declare Customer someCustomer;
uniqueKey = self.allocateCustId(); // define this somewhere
create someCustomer values (id:uniqueKey);

(The identifier self never needs to be declared; it always refers to the object
in which the action is executing.)

When you create objects that must have unique keys, use the values clause to
set these keys during creation to avoid creating objects with duplicate keys.

If an entity is marked in IDLos with the singleton property, you must use the
create singleton statement (see “Singletons” on page 112) to create it.

Deleting objects

To remove an object from shared memory, use the delete statement:

delete someCustomer;

Singletons

If an entity is marked in IDLos with the singleton property, you must use the
create singleton statement to create it:

Chapter 3: Action language
Manipulating objects

113

// PortAllocator was defined as a singleton in IDLos
declare PortAllocator thePortAllocator;
create singleton thePortAllocator;

This creates a new PortAllocator object in shared memory unless one exists
already, in which case it simply makes thePortAllocator refer to the existing
object.

Object references

The preceding paragraphs have used object references in declarations, create
statements, and other ways. When you first declare an object, it does not yet
refer to anything—it is simply an empty reference:

declare Customer myNewestCustomer;
myNewestCustomer.name = "ObjectSwitch"; // invalid!

You need to create the object or assign the handle to an existing object
before you can use it:

declare Customer myNewestCustomer;
create myNewestCustomer;
myNewestCustomer.name = "ObjectSwitch"; // this is OK

The “empty” keyword Sometimes you need to test whether an object reference
is valid or not. For example, a select (see “Selecting objects” on page 116)
may not return a valid object:

declare Customer aCustomer;
select aCustomer from Customer where (aCustomer.id == 1);
aCustomer.name = "ObjectSwitch"; // might be invalid!

In cases where you might have an invalid object reference, you can check it
using the empty keyword:

declare Customer aCustomer;
select aCustomer from Customer where (aCustomer.id = 1);
if(empty aCustomer)
{

// whatever you do when there’s no customer 1
}
else
{

aCustomer.name = "ObjectSwitch"; // OK
}

114

Chapter 3: Action language
Manipulating objects

Operation and signal parameters

When you define an operation (or signal) you can specify formal parameters
that the operation takes. The following paragraphs describe the calling
conventions and notation for the actual parameters that you supply when
you call the operation from action language.

Calling conventions Actual parameters that you pass in when you call an
operation or signal are passed either by reference or by value:

• objects are always passed by reference
• other types (fundamental, complex, etc.) are always passed by value

These calling conventions may have performance or functional impact on
your application, so be clear about the difference. For example, using a
large struct as a parameter to a remote operation may cause much more
network traffic than using an object.

Positional and named parameters The action language lets you call operations
and signals using either positional or named parameters. If you use any
named parameters, you must name all parameters — you cannot use named
and positional parameters in the same call.

For example, given the IDLos:

entity CallingOpsAndSignals
{

signal aSignal(in long inL, in boolean inB);
};

you can invoke the signal in action language using either named or
positional parameters:

declare long aLong = 1;
declare boolean aBoolean = false;

//
// Call aSignal using positional parameters
//
self.aSignal(aLong, aBoolean);

//
// Call aSignal using named parameters. Notice that
// the parameter order was reversed.
//

Chapter 3: Action language
Manipulating objects

115

self.aSignal(inB:aBoolean, inL:aLong);

Accessing operations and attributes

As demonstrated in previous examples, you access the attributes of an object
using the “dot” operator. This is also how you access its operations:

if(thisCustomer.creditLimit > requestedAmount)
{

thisCustomer.sendApprovalLetter();
}

You can’t access nested members by chaining together multiple “dot”
operators:

declare short since;
since = thisCustomer.profile.customerSince; // illegal

Instead, you need to use an intermediate variable:

declare CustProfile thisProfile;
declare short since;
thisProfile = thisCustomer.profile;
since = thisProfile.customerSince;

Handling relationships

A relationship between entities in an IDLos model specifies the objects that
may be related to each other. Relating specific objects to other objects is
something that you do at run time using the role name:

Relating and unrelating objects A relationship between entities in an IDLos
model specifies the objects that may be related to each other. Relating
specific objects to other objects is something that you do at run time using
the role name:

declare Customer thisCust;
declare Invoice thisInvoice;

//
// Select customer, create invoice, and relate the two
//
select thisCust from Customer where (thisCust.id=123);
create thisInvoice;
relate thisCust isBilledBy thisInvoice;

116

Chapter 3: Action language
Manipulating objects

This leaves the two objects related in the shared memory, so that you can
always find one given the other. For example, you can process all the
invoices for a customer:

for oneInvoice in Invoice->Customer[bills]
{

// process the invoice
};

When you no longer want two objects to be related, use the unrelate
statement:

unrelate thisCust belongsTo thisSalesRep;

When you delete an object that is related to another object, the Application
Server does an automatic unrelate for you. You are not left with a dangling
relationship from the surviving object. If you are using unrelate triggers,
note the specific behavior of the triggers for this implicit unrelate, described
in “Role trigger” on page 48.

Navigation You can “navigate” (traverse) across multiple relationships to find
one object that is related to another via one or more intermediate objects. For
example, suppose for each overdue invoice we want to notify the manager of
the customer’s sales representative:

declare
{

Invoice theInv;
SalesManager theMgr;

}
for theInv in Invoice
{

if(theInv.isLate)
{

theMgr = Invoice
->Customer[bills]
->SalesRep[belongsTo]
->SalesManager[worksFor];

theMgr.notify();
}

}

Selecting objects You use the select statement to select a single object from a
relationship, extent, or singleton. You always include a where clause:

select aCustomer from Customers where (aCustomer.id=123);

Chapter 3: Action language
Manipulating objects

117

except when you’re selecting a singleton or from a “one” end of a
relationship:

select aCustomer from thisInvoice->Customer[bills];

The next chapter explains how to build your models into deployable components.

118

Chapter 3: Action language
Manipulating objects

119

4 Building ObjectSwitch components

When you build your model into a component, everything needed to
deploy the model on an ObjectSwitch node is wrapped into a single file.

This chapter describes the ObjectSwitch tools and commands you use
to generate an ObjectSwitch component. To build a component from
your model you:

1 Design an implementation

2 Build the model into a deployable component

A component specification is used to build an implementation of your
model and is introduced in this first section of the chapter:

• The ObjectSwitch component
• What is a component specification?
• Defining a component specification

120

Chapter 4: Building ObjectSwitch components
The ObjectSwitch component

This chapter is a guide to developing a component specification. It is
presented as follows:

• Creating a project
• Working with model sources
• Defining a component
• Putting packages in a component
• Importing another component
• Adding adapters
• Adding model elements to adapters
• Saving a component specification

The final section of the chapter describes how you build a deployable
component from your component specification:

• Building the component

The ObjectSwitch component
An ObjectSwich component is an executable model that can be
deployed and reused. You deploy a component in the ObjectSwitch
runtime using the Engine Control Center (see the Deploying and
Managing ObjectSwitch Applications). To reuse a component, you import
the component providing the service into a new component.

You turn your model into a component using a component
specification.

Chapter 4: Building ObjectSwitch components
The ObjectSwitch component

121

What is a component specification?

A model is an abstract definition of your application logic, with little or
no consideration for implementation. Your component specification, by
contrast, specifies how you want the model implemented. A component
specfication defines:

• model source files to include
• model elements to implement in the component
• service adapters to implement for model elements
• dependencies with other components
• compile time options

You use a component specification to build applications from models. It
describes how to turn your model into a deployable Objectswitch
component.

Defining a component specification

Whether you use the graphical user interface or text-based commands
to compose your specification you can view this as a three step process.

1 Create the project. Define the structure of your implementation (for
example: two components, one with a database adapter).

2 Populate the specification. Select the elements from your model for
each part of the implementation (for example: package A for compo-
nent A, interface B for adapter C).

3 Add properties. Select and add the properties to the model elements
you are implementing.

122

Chapter 4: Building ObjectSwitch components
The ObjectSwitch component

Figure 41 shows a conceptual view of this process.

Although Figure 41 shows this as three discrete stages you can mix the
individual steps in any way that is convenient. The order is not
important.

The individual steps by which you define a project are described in
greater detail in the following sections.

Figure 41: The three
general stages in
defining a project

ComponentA
ComponentB

AdapterB

packageA
ComponentA

interfaceB

packageB
ComponentB

AdapterB

packageA
ComponentA

includePathA

interfaceB

packageB
ComponentB

AdapterB

libraryPathB

1: Create project

2: Populate
specification

3: Add properties

Chapter 4: Building ObjectSwitch components
Creating a project

123

Graphics vs Text to build a component specification

The Visual Design Center window (or “VDC”) lets you design your
component specification graphically. Or you can write your component
specification in a text editor and run the build directly from the
command line using any text editor that saves a straight flat file, such
as vi on the Solaris platform.

The following sections show, in parallel, the process of developing the
component specification with the Visual Design Center and in a text
file.

Creating a project
The component specification begins with a project. A project is the
container in which you will develop your component specification. You
can specify multiple component definitions in a single project. The
components you add to your project define the runtime partitioning of
your application model.

Figure 42 presents a hierarchical view of project elements.

Figure 42: a project
tree

myProject

myComponent

Orbix Adapter

myPackage

myInterface

Oracle Adapter

myEntity

124

Chapter 4: Building ObjectSwitch components
Creating a project

myInterface and myEntity are model elements from myPackage.

Visual Design Center In the Visual Design Center you need to start a
new project before you can define a component specification.

To start a new project:

1 You select the project icon from the palette and drag it into the
project window.

2 To rename the project, right click on the project name and select
Rename from the menu. Type in the new project name.

Figure 43 shows a new project icon before it has been renamed.

Text The component specification text file is equivalent to a project in
the Visual Design Center. The component specification file is one of
the parameters passed to the swbuild utility when you build the
deployable component. Refer to “Starting a build in text” on page 140.

Figure 43: Adding a
new project

Chapter 4: Building ObjectSwitch components
Creating a project

125

Project properties

You can define properties, such as buildPath and classPath, at the
project level. If you set properties at the project level they will be
defined globally for the entire project. For a complete list of properties
available at the project level, see “Properties” on page 363.

Visual Design Center In the VDC, to set a project property:

1 Click on the “+” sign on the left of the project icon to expose the
Properties tag immediately below.

2 Right click to open the pop-up menu and select Add Properties.

Figure 44: add
properties option

126

Chapter 4: Building ObjectSwitch components
Creating a project

3 Highlight the property you wish to add from the property list and
click OK. This adds the new property below the Properties tag.

4 Right click the new property and select Edit Properties.

Figure 45: properties
list window

Chapter 4: Building ObjectSwitch components
Creating a project

127

5 Enter the property value, then highlight the selection. Click on OK.

Editing a project property To change the property that you’ve added to
a project, right click on the property and edit it as described above.

Text To set a project property, define the property outside the scope of
all the components in the component specification file. For example:

// project property
buildPath = “some/build/path”;
component Component1
{
};
component Component2
{
};

Figure 46: Editing a
new property

128

Chapter 4: Building ObjectSwitch components
Working with model sources

Working with model sources
The core of the project is your model sources. The component
specification is used to build a deployable or reusable implementation
of this model.

Visual Design Center The Visual Design Center window opens with all
the model packages you currently have open in Rational Rose available
in the model browser.

In the case of legacy IDLos models, if your model includes other files,
such as the IDLos #include directive, you need to specify the include
path for those files. See “Setting up Design Center access”.

Whenever you build a component, the model is automatically refreshed
from the source(s) that you have selected.

You can view your model source in the Visual Design Center model
browser by clicking on the “+” to the left of the model name. The table
below describes which model element each icon in the browser
represents.

Text You identify the sources for a component with source keyword.
These files will be loaded into the Design Center server prior to a build.
Source files must be listed in the correct order of dependency. If you

Package

Entity, attribute, operation (shown from left to right)

Interface

Key

Relationship

Role

Signal

Chapter 4: Building ObjectSwitch components
Defining a component

129

use a source statement in the component specification rather than
#include directives in IDLos files, the Design Center server can
optimise reloading.

In the example below, one source statement has an associated
includePath property, which is valid only for that source statement.
Source statements may have other properties, as well.

component MyComponent
{
 source /path/to/myfile.soc
 source anotherfile.soc
 {
 includePath = some/file/path;
 };
};

Defining a component
A component specification will contain all the information necessary to
build a deployable and reusable component from your model.

130

Chapter 4: Building ObjectSwitch components
Defining a component

Visual Design Center Select and drag the component icon into the
project. Figure 47 shows a component icon added to the project and
renamed TrafficComponent.

Text You start the textual component specification with the component
keyword. This starts the definition of a component block. For example:

component TrafficComponent
{
 // a component specification for the Traffic applicaton
};

A component implements model packages. It may contain adapters, or
model elements; these may be grouped.

Component properties

There are a number of properties that you can set for a component that
control how the compilers generate code. More than one property may
be set for a component. For a complete list of properties available at the
component level, see “Properties” on page 363.

Figure 47: Adding a
new component

Chapter 4: Building ObjectSwitch components
Putting packages in a component

131

Visual Design Center You add, and edit, component properties like you
add and edit project properties. Select the Properties tag below the
component and refer to the VDC section of “Project properties” on
page 125 for step by step instructions.

Text To set a component property, define the property inside the
component block in the component specification file.

component Component1
{
 includePath = “some/include/path”;
}

Many of these properties can also be set on a project so that they apply
to all the components contained in the project. For more information
refer to “Project properties” on page 125.

Putting packages in a component
You add complete packages to a component. It is not possible to add
some entities in a package to one component, and other entities in that
package to another component.

132

Chapter 4: Building ObjectSwitch components
Putting packages in a component

Visual Design Center You specify the packages that you want in a
component by dragging the package from the model browser into the
component, as shown in Figure 48.

Text The keyword package signifies an element type. A package can
belong to a component, an adapter, or a group.

component MyComponent
{
 package MyPackage;
}

You cannot partition a package across components, but you can
implement a package in more than one component. This constraint
should be taken into consideration at the modeling stage.

Figure 48: Adding a
package to a component

Chapter 4: Building ObjectSwitch components
Importing another component

133

Importing another component
You can use a component as a service in another component. To do
this, you import one component—the one providing the service—into
the other. You will need to create a client model to use that new service.
For example, the client model may instantiate and use interfaces in the
service component. Figure 49 illustrates this concept.

Visual Design Center To import another component into the Visual
Design Center window:

1 Open File -> Import from the Design Center menu.

Figure 49: Two models
used as client and

 server components

Build a component

Build a component
ObjectSwitch

node

model A

model B

component
(model B)

component
(model A)

uses model A component

134

Chapter 4: Building ObjectSwitch components
Importing another component

2 Select the component from the component list and click OK.
Figure 50 shows the Import window.

The component you wish to import should reside in the component include
path defined in Rose under Project Properties. By default, "." and
$SW_HOME/distrib/$SW_PLATFORM/component are searched.

Text When a component A depends upon another component B, you
declare A’s dependency upon B with the import statement. In the
example below, the default include path is augmented with the
includePath property for all components referenced in component A.

component A
{
 importPath = /some/path;
 import B;
};

Figure 50: Importing a
component

Chapter 4: Building ObjectSwitch components
Adding adapters

135

Adding adapters
You add adapters to a component to implement selected entities or
interfaces in a database or service. For example, if you want selected
entities in a component to be implemented in Oracle, you would add an
oracle adapter to the component. When you build your application, the
component will include code to maintain and synchronize the database
and shared memory copies of its objects.

Visual Design Center You specify an adapter that you want in a
component by dragging its icon into the component.

Figure 51 shows an adapter added to a component.

Figure 51: Adding an
adapter to a component

136

Chapter 4: Building ObjectSwitch components
Adding model elements to adapters

Text You add an adapter to a component with the adapter keyword
followed by the name of the adapter. The example below shows how
component A uses the CORBA adapter swiona to implement the
interface ::MyPackage::MyInterface:

component A
{
 adapter swiona
 {
 interface ::MyPackage::MyInterface;
 }
};

Adapter properties

There are a few properties that you can set for adapters. You add and
edit adapter properties like you add and edit project and component
properties. Each type of adapter has different properties; for these
properties and the values they can take, refer to the documentation for
each individual adapter.

Adding model elements to adapters
When you add an adapter to a component you also need to designate
which entities or interfaces, depending on the adapter type, are used
with that adapter.

For instance, you connect a modeled entity to an external
implementation, such as a database, using a database adapter. You
connect a model interface to an external protocol such as CORBA or
SNMP using a protocol adapter. Refer to the specific adapter in each
service adapter for more information on what can be implemented in
that adapter.

Chapter 4: Building ObjectSwitch components
Adding model elements to adapters

137

Visual Design Center You specify the adapter that you want in a
component by dragging its icon to the component. Figure 52 shows an
interface added to an EJB adapter.

Text The model element types are: package, module, interface, entity,
relationship, operation, signal, attribute, role and key.

component MyComponent
{
 adapter CORBA
 {
 interface ::MyPackage::MyInterface;
 };
 adapter Oracle
 {
 entity ::Mypackage::MyEntity
 {
 readString = “Some SQL String”;
 };
 };
};

Figure 52: Adding an
an interface to an

adapter

138

Chapter 4: Building ObjectSwitch components
Saving a component specification

Model element properties

Implementation adapters let you set properties on an entity to control
how those objects are cached, and to support legacy databases. Refer to
the documentation for Database Adapters to learn how to use these
properties.

Some protocol adapters allow you to set properties on the interface.
Refer to the documentation for Database Adapters to learn how to use
these properties.

You add and edit model element properties within the element block
like you add and edit project and component properties. Refer to
“Project properties” on page 125 for step by step instructions in both
the VDC and text.

Putting relationships and roles into adapters

Refer to the documentation on individual adapters for more about
relationships and roles in adapters.

Putting attributes into adapters

You add attributes to an adapter to override the settings for that
attribute in the interface or entity. For example, a read-write attribute in
an interface can be made read-only for use with an adapter.

Setting attribute properties Some adapters let you customize
attributes to override the default definition for the attribute in its
enclosing entity or interface.

You add and edit attribute properties within the attribute block like you
add and edit project and properties.

Saving a component specification

Visual Design Center The component specification is automatically
saved with the model file, .mdl. However, at times you might want to
save a text version. For example you might want to automate a build.

Chapter 4: Building ObjectSwitch components
Building the component

139

You can save a text version of the component specification for an entire
project or a single component by right clicking on the selected item and
choosing Export from the pop-up menu. Select the directory you wish
to save the file in and click on Export. This will save a file using the
name of the item you have selected with the extension .osc.

It also exports the .soc and .act files.

Building the component
This section describes how you build a deployable component. Before
you can build the component, you must have selected model sources
and completely defined your component specification.

What can you build?

You can build either an entire project or a single component. Building a
project is the same as building each component in the project
separately.

Figure 53: export
window

140

Chapter 4: Building ObjectSwitch components
Building the component

Starting a build in Visual Design Center To build a component or
project, right-click on it and choose Build from the pop-up menu..

Starting a build in text The utility swbuild allows you to build
ObjectSwitch applications from the command line. It requires the
model and the component specification files and is as follows:

swbuild [options] mySpecFileName

By default, swbuild performs both an audit and a build. The [] define
options to perform an audit only, use the “-a” option. The optional “-o
<macro>=<value>” assigns a value to a macro used in the build (see
“Macros” on page 361.) The “spec file” is the Component specification
file. If none is specified, standard input is used.

Figure 54: Starting the
build process

option description

a performs an audit

o assigns a value to a macro used in the build

Chapter 4: Building ObjectSwitch components
Building the component

141

What is auditing?

Before the build begins the Design Center server will run an audit.This
is automatically part of the build process. You may also run a seperate
audit before you build.

Auditing your model checks for many different kinds of errors that can
be expressed in valid modeling syntax. The audit that takes place
before a build includes not only model syntax , but action language too;

this also performs adapter-specific checks for any adapters in the build.
Some of the audit checks are:

• Are all element names unique within their scopes?
• Is the model free of inheritance “loops”?
• Are all entity and interface definitions complete?
• Are all modules contained in packages?
• Are all relationships contained entirely within single packages?
• Do relationships have at most one role per direction?
• Do state transitions use signals and states that are defined for the

entity?
• Do interfaces expose only what exists?
• Do operations, attributes, parameters, and data types used in action

language agree with their IDLos definitions?
• Are relationships traversals in action language possible in the IDLos

model?
• Are properties such as key and singleton observed in action lan-

guage?

What you get after you build

After a successful build, you get a set of output files. By default, these
files, and some subdirectories, are created in the directory running the
Design Center server. You can alter this location by specifying a
directory using the buildPath property. See “Project properties” on
page 125 or “Component properties” on page 130.

142

Chapter 4: Building ObjectSwitch components
Building the component

Although the build generates many files, there is only one that you
need to be concerned with. That file is the component archive, named
componentname.kab(where componentname is the name you gave your
component in the Visual Design Center or the component block in the
text file). This is the archive file that you deploy on an ObjectSwitch
node using the Engine Control Center. See the Deploying and Managing
ObjectSwitch Applications for more about deploying components using
the Engine Control Center.

5 Accessing ObjectSwitch through PHP

PHP is a widely-used general-purpose scripting language that is
especially suited for Web development and can be embedded into
HTML. The functionality of PHP can be extended by building
dynamically loaded extensions.

The ObjectSwitch PHP4 extension provides access to ObjectSwitch
objects from within PHP scripts. This lets you invoke requests on a web
server that interact directly with ObjectSwitch applications.

ObjectSwitch also has a built-in PHP interpreter, so you can execute
PHP scripts from within ObjectSwitch actions.

This chapter begins with several sections that describe how to use the
PHP extensions generally:

• Overview
• Data types
• PHP script language
• PHP4 Extension
143

Chapter 5: Accessing ObjectSwitch through PHP
The chapter continues with a detailed description of each function in
the ObjectSwitch PHP extension:

• os_connect
• os_create
• os_delete
• os_disconnect
• os_extent
• os_get_attr
• os_invoke
• os_relate
• os_role
• os_set_attr
• os_unrelate

The chapter finishes with the following sections that describe specific
aspects of the PHP extension and provide an example:

• Web Server—Apache
• Command Line Utility
• Execute PHP in action language
• Transactions
• A PHP example
144

Chapter 5: Accessing ObjectSwitch through PHP
Overview
Overview
The ObjectSwitch PHP4 extension provides a set of PHP functions to
access ObjectSwitch applications using PHP scripts. The scripts can be
executed in any of several ways:

• from a web browser
• from a command line using the CGI version of PHP
• from within an ObjectSwitch action

The following table presents a brief description of each function call in
the PHP extensions.

For more detailed information on each of the function calls see the
reference in Chapter 11.

PHP extension function Description

os_connect create a new connection to the ObjectSwitch osw
engine

os_create creates an ObjectSwitch entity and returns its refer-
ence

os_delete delete an ObjectSwitch entity

os_disconnect disconnect from the ObjectSwitch engine

os_extent retrieve the extent of object handles for a type

os_get_attr retrieves the value of all attributes in an
ObjectSwitch entity

os_invoke invoke an operation on an ObjectSwitch entity

os_relate relate two interfaces

os_role retrieves an array of handles by navigating across a
relationship

os_set_attr set the value of an ObjectSwitch attribute

os_unrelate un-relate two interfaces
145

Chapter 5: Accessing ObjectSwitch through PHP
Data types
Data types
By nature, PHP is a loosely typed system and ObjectSwitch is a
strongly typed system. Therefore, there is no exact type mapping
between PHP and ObjectSwitch. The ObjectSwitch PHP extension
supports basic types, enums and object references. It also supports
arrays and sequences of basic types, enums and object references. All
variables default to type string. At runtime, PHP decides the variable’s
type by its context.

Basic types

The table below lists the basic types that are supported. The following
sections provide details of how each of the types is supported.

ObjectSwitch types PHP types

short
long
unsigned short
unsigned long
long long
unsigned long long
float
double
char
octet
string
wchar
wstring

string
146

Chapter 5: Accessing ObjectSwitch through PHP
Data types
Boolean

In PHP the boolean value for false is 0 or “” (empty string) and all other
values are true. The tables below show the mapping between
ObjectSwitch and PHP boolean values.

Enum

The symbolic name of enums are used in PHP.

Object references

References to ObjectSwitch objects in PHP are represented by strings.
The internal format of the string is not documented. Do not manipulate
object references directly. One special case is when the object
reference represents an empty object. It is “” (empty string).

Arrays and sequences

ObjectSwitch arrays, sequences and bounded sequences are mapped to
PHP arrays. PHP arrays are truly dynamic. It does not have any size
limitation nor do the elements have to have the same type.

These ObjectSwitch booleans... map to these PHP booleans

SW_FALSE 0

SW_TRUE 1

These PHP booleans... map to these ObjectSwitch booleans

0 (zero) or “” (empty string) SW_FALSE

All other values SW_TRUE
147

Chapter 5: Accessing ObjectSwitch through PHP
Data types
When arrays are used with the ObjectSwitch PHP extension the
elements must be either:

• basic type
• enum
• object reference

You must keep in mind that ObjectSwitch has bound checking for
arrays and bounded sequences.

Note: See os_set_attr() and os_invoke() for sequence type limitations.

Unsupported types

The following ObjectSwitch types are not supported.

• struct
• union
• any
• native
148

Chapter 5: Accessing ObjectSwitch through PHP
PHP script language
PHP script language
The ObjectSwitch PHP4 extension must be executed from within a
PHP script. This section briefly discusses how to write PHP scripts.

PHP Syntax

The following is a PHP script example

<html><head><title>PHP Test</title></head>
<body>
<?php echo "Hello World<p>"; ?>
</body></html>

The code between <?php and ?> is PHP script. A PHP script need not be
embedded inside of HTML file. It could simply be

<?php echo "Hello World<p>"; ?>

PHP script is free syntax and loosely typed language. All variables used
in the script must have a prefix of dollar sign “$”. All statements must
end with “;”.

<?php
$name = “Jone Doe”;
$num = 5;
$flag = true;
$list = array (1, 2, 3, 4);
$attrList = array(“m_name” => “John”, “ssn” =>55555555);

?>

Using the extension

You must call the function os_connect() before using any other
ObjectSwitch extension functions. This gets a connection to the
ObjectSwitch Web Engine (osw) and subsequent requests are
processed by osw.

<?php
$conn_id = os_connect(“localhost”, 7654);
$objr = os_create($conn_id, “myPkg::myIfc”);
$msg = os_invoke($conn_id, $objr, “getMessage”);
print $msg;
os_delete($conn_id, $objr);
os_disconnect($conn_id);

?>
149

Chapter 5: Accessing ObjectSwitch through PHP
PHP script language
Error handling

The error handling behavior in PHP is controlled by the settings in
php.ini file.

error_reporting bit mask controls what to report
display_errors On or Off
track_errors On or Off

If display_errors is on, error message will show up on the web page. If
track_errors is on, when error happens the message will also be set in a
PHP variable called $php_errormsg. The following script segment
shows how to use $php_errormsg

<?php
$php_errormsg = ““;
$conn_id = os_connect(“localhost”, 7654);
if ($php_errormsg != ““)
{

print “Connect trouble: $php_errormsg\n”;
exit(-1);

}
...

?>

More information on standard PHP and HTML scripting languages can
be found in any PHP or HTML manual. Or visit the PHP web site at
http://www.php.net
150

Chapter 5: Accessing ObjectSwitch through PHP
PHP4 Extension
PHP4 Extension
This section provides a detailed description of each function in the
ObjectSwitch PHP extension. This information can also be found in
Chapter 11.
151

Chapter 5: Accessing ObjectSwitch through PHP
os_connect
os_connect
Creates a new connection to ObjectSwitch osw engine.

Syntax
$conn_id = os_connect ($host, $port);
$conn_id = os_connect ($host);
$conn_id = os_connect ();

Description

This function creates a connection between the PHP process and the
osw engine.

conn_id is a PHP variable.

host and port are optional parameters that locate the osw engine.

If host and port are not set they will default to the host and port specified
in the php.ini file.

Warnings

None

Error Conditions

• Not able to connect to ObjectSwitch server
152

Chapter 5: Accessing ObjectSwitch through PHP
os_create
os_create
Creates an ObjectSwitch object and returns its reference.

Syntax

$objr = os_create ($conn_id, $scopedName, $attrList);
$objr = os_create ($conn_id, $scopedName);

Description

This function creates an object and returns its reference in the variable
objr. If the object has attributes, an optional attrList could be passed in
to set the attribute initial values.

When the scopedName type is a singleton, this call acts like the create
singleton in action language. It creates the singleton if it does not exist.
Otherwise, it returns the object reference.

conn_id is the value returned by os_connect().

objr is the return value.

scopedName is a fully scoped ObjectSwitch interface name.

attrList is an optional associative array of attribute names and values.

Example
//
// create a sales person with “name” initialized
//
$salesType = “myPackage::Salesman”;
$salesAttrArray = array(‘name’ => ‘Slick Willy’);
$salesHandle = os_create($conn_id, $salesType, $salesAttrArray);

//
// create a customer - without attribute array
//
$custType = “myPackage::Customer”;
$custHandle = os_create($conn_id, $custType);
153

Chapter 5: Accessing ObjectSwitch through PHP
os_create
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid scoped name
• Invalid attribute name
• Unsupported type
• No create access
• Duplicate Key
154

Chapter 5: Accessing ObjectSwitch through PHP
os_delete
os_delete
Deletes an ObjectSwitch object.

Syntax

os_delete($conn_id, $objrList);
os_delete($conn_id, $objr);

Description

The second parameter may be a either a single object reference or an
array containing a list of object references.

conn_id is the value returned by os_connect().

objrList is an array of valid object instances to delete.

objr is a valid object instances to delete.

Warnings

None.

Example
//
// Delete all Orders
//
$sn = “mypackage::Order”;
$orderList = os_extent($conn_id, $sn);
os_delete($conn_id,$orderList);

//
// delete a single object
//
$objr = os_create($conn_id, $sn);
os_delete($conn_id, $objr);

Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• No delete access
155

Chapter 5: Accessing ObjectSwitch through PHP
os_disconnect
os_disconnect
Disconnect from the ObjectSwitch engine.

Syntax
os_disconnect ($conn_id);

Description

conn_id is the return value from a call to os_connect().

Warnings

None.

Example
/* close a connection to the osw engine */
os_disconnect($xconn);
156

Chapter 5: Accessing ObjectSwitch through PHP
os_extent
os_extent
Retrieve the extent of object handles of a given type.

Syntax

$objrList = os_extent($conn_id, $scopedName, $attrList);
$objrList = os_extent($conn_id, $scopedName);

Description

This function will select objects of a given type. If attrList is provided, it
contains a list of name-value pairs that are ANDed together as a where
clause to filter the number of object handles being returned.

If the objects are keyed and attrList has key coverage, a keyed lookup
will be performed.

conn_id is the value returned by os_connect().

objrList is the return value and is a PHP array of scalar values.

scopedName is a string containing the fully scoped name of a type.

attrList is an optional associative array of attribute names and values.

Warnings

None.

Example
//
// get all customers
//
$sn = “myPackage::Customer”;
$custList = os_extent($conn_id, $sn);

//
// return all customers in California
//
$sn = “myPackage::Customer”;
$whereClause = array(‘state’ => ‘CA’);
$custList = os_extent($conn_id, $sn, $whereClause);
157

Chapter 5: Accessing ObjectSwitch through PHP
os_extent
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid scoped name
• Invalid attribute name
• Unsupported type or bad value
• No extent access
158

Chapter 5: Accessing ObjectSwitch through PHP
os_get_attr
os_get_attr
Retrieves the values of the attributes in an ObjectSwitch object.

Syntax

$attrList = os_get_attr($conn_id, $objr, $filter);
$attrList = os_get_attr($conn_id, $objr);

Description

This function retrieves attribute values from an object. If filter exists,
only the values of those attributes named in the filter array will be
returned. Otherwise, all attributes values will be returned.

conn_id is the value returned by os_connect().

attrList is an optional associative array of attribute names and values.

objr is an ObjectSwitch object handle.

filter is an optional associative array of attribute names and values.

Warnings

None.

Example
//
// get all attributes of a cusotmer
//
$attrs = os_get_attr($conn_id, $custHandle);
for (reset($attrs); $name = key($attrs); next($attrs))
{

 $avalue = $attrs[$name];
 print “$name = $value\n”;

}

//
// get the state attribute only
//
$filter = array (“state” => ““);
$attrs = os_get_attr($conn_id, $custHandle, $filter);
$state = $attrs[“state”];
print “This customer is in state of $state\n”;
159

Chapter 5: Accessing ObjectSwitch through PHP
os_get_attr
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid attribute name
160

Chapter 5: Accessing ObjectSwitch through PHP
os_invoke
os_invoke
Invoke an operation on an ObjectSwitch object.

Syntax

$returnValue = os_invoke($conn_id, $objr, $opName, $param, $ex);
$returnValue = os_invoke($conn_id, $objr, $opName, $param);
$returnValue = os_invoke($conn_id, $objr, $opName);

Description

This function is used to invoke an operation on an object. The
returnValue is not required on void operations. If a parameter is an
inout or out parameter the value of that array element in param will be
modified with the result parameter value after a call. If the operation
raises user defined exception, $ex will contain the name of the
exception type as a string upon return.

conn_id is the value returned by os_connect().

returnValue is the return value of the operation upon completion.

objr is a valid object instance handle.

opName is the name of an operation.

param is a nested associative array of parameter name and value pairs.

ex is the name of user exception thrown by the operation.

os_invoke does not work with in or inout parameters of sequence type.
161

Chapter 5: Accessing ObjectSwitch through PHP
os_invoke
Example
//
// call a void operation that does not have any params
//
os_invoke($conn_id, $objr, “runtest”);

//
// call an operation with parameters that returns a boolean
//
$params = array (“name” => “Smith”, “number” => 5);
$ret = os_invoke($conn_id, $objr, “register”, $params);
if ($ret)
{

print “OK\n”;
}
else
{

print “register failed\n”;
}

When an operation raises user defined exceptions, os_invoke() can get
the exception type, but not the exception data if it has member fields.

//
// operation with user defined exceptions
//
$userex = ““;
$params = array();
os_invoke($conn_id, $objr, “myOp”, $params, $userex);
if ($userex != ““)
{

print “Caught user exception $userex\n”;
}

Array types can be used as in, out, inout parameters and return values.
Sequence types can be used as out parameter or return values.

//
// array or sequence type as out param
//
$params = array (“myList” => array());
$ret = os_invoke($conn_id, $objr, “getList”, $params);
$list = $params[“myList”];
for ($i = 0; $i < count($list); $i++)
{

$value = $list[$i];
print “list[$i] = $value\n”;

}

162

Chapter 5: Accessing ObjectSwitch through PHP
os_invoke
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid operation name
• Invalid parameter name
• Unsupported type or bad value
• Application exception
163

Chapter 5: Accessing ObjectSwitch through PHP
os_relate
os_relate
Relates two interfaces.

Syntax

os_relate($conn_id, $fromObjr, $roleName, $toObjr);

Description

This function relates two objects using the relationship role roleName.

conn_id is the value returned by os_connect().

fromObjr is a valid object reference handle.

roleName is the name of a role in a relationship between the “from”
and “to” objects.

toObjr is a valid object reference handle.

Warnings

None.

Example
$salesType = “myPackage::Salesman”;
$salesAttrArray = array(‘name’ => ‘Slick Willy’);
$salesHandle = os_create($conn_id,$salesType, $salesAttrArray);

$custType = “myPackage::Customer”;
$custAttrArray = array(‘name’ => ‘Lucent’, ‘state’ => ‘NJ’);
$custHandle = os_create($conn_id,$custType, $custAttrArray);
os_relate($conn_id,$salesHandle, “hasCust”, $custHandle);

Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid role name
164

Chapter 5: Accessing ObjectSwitch through PHP
os_role
os_role
Retrieves an array of handles by navigating across a relationship.

Syntax

$objrList = os_role($conn_id, $objr, $roleNam, $attrList);
$objrList = os_role($conn_id, $objr, $roleNam);

Description

This function returns an array of object references as it navigates
across the appropriate relationship. The name-value pairs in attrList are
ANDed together to act as a where clause to filter the number of object
handles being returned.

conn_id is the value returned by os_connect().

objrList is a list of object references.

objr is an ObjectSwitch object handle.

roleName is a relationship role name.

attrList is an optional associative array of attribute names and values.

Warnings

None.

Example
/*
** assume Salesperson is related 1:M with customer
** and that $salesHandle is already populated with a
** valid Salesperson.
*/
$cList = os_role($conn_id, $salesHandle, “sellsTo”);
for (reset($cList); $cust = current($cList); next($ctList))
{

 /* do something with $cust */
}

165

Chapter 5: Accessing ObjectSwitch through PHP
os_role
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid role name
• Invalid attribute name
• Unsupported type or bad value
166

Chapter 5: Accessing ObjectSwitch through PHP
os_set_attr
os_set_attr
Sets a value in an attribute of an ObjectSwitch object.

Syntax

os_set_attr($conn_id, $objr, $attrList);
os_set_attr($conn_id, $objr, $name, $value);

Description

This function sets a value of an object attribute. More than one attribute
value can be set in an object.

conn_id is the value returned by os_connect().

objr is an ObjectSwitch object handle.

attrList is an optional associative array of attribute names and values.

Setting uninitialized attributes of sequence type does not work. However,
there is a work around using pre-set triggers.

Example
//
// set the name of a customer
//
$attrArray = array(‘name’ => ‘John’);
os_set_attr($conn_id, $objr, $attrArray);

//
// or using
//
os_set_attr($conn_id, $objr, “name”, “John”);

//
// set array attribute
//
$value = array (1, 2, 3, 4, 5);
$attrArray = array (“longList” => $value);
os_set_attr($conn_id, $objr, $attrArray);
167

Chapter 5: Accessing ObjectSwitch through PHP
os_set_attr
Using pre-set trigger to set sequence attributes This section
describes the workaround that lets you set sequence attributes from
PHP.

//
// set sequence attribute with pre-set trigger
// this is what needs to be done in the model.
//
package Example
{

typedef sequence<string>StringList;

interface Complex
{

attribute StringListt_stringlist;
};

entity ComplexImpl
{

attribute StringList_stringlist;

void t_stringlist_init();
trigger t_stringlist_init upon pre-set t_stringlist;

};

expose entity ComplexImpl with interface Complex;
};

action ::complexTest::IComplexImpl::t_stringlist_init
{`

declare StringList l;

disableTriggers();
self.t_stringlist = l;
enableTriggers();

`};

Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid attribute name
• Attribute is readonly
• Unsupported type or bad value
• Duplicate Key
168

Chapter 5: Accessing ObjectSwitch through PHP
os_unrelate
os_unrelate
Unrelates two objects.

Syntax

os_unrelate($conn_id, $fromObjr, $roleName, $toObjr);

Description

This function unrelates two objects that are currently related using the
relationship role roleName.

conn_id is the value returned by os_connect().

fromObjr is a valid object reference handle.

roleName is a relationship role name.

toObjr is a valid object reference handle.

Warnings

None.

Example
$custList = os_role($conn_id, $salesHandle, “:sellsTo”);
for (reset($custList); $cust = current($custList); next($custList))
{

 os_unrelate($conn_id, $salesHandle, ‘hasCust’, $cust);
}

Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid role name
169

Chapter 5: Accessing ObjectSwitch through PHP
Web Server—Apache
Web Server—Apache
When a web browser executes a PHP script that uses the ObjectSwitch
PHP extension, it needs a web server that is PHP enabled and has
ObjectSwitch extension loaded. Various web servers can be used with
PHP, but Kabira has only certified the PHP extensions using the
Apache server.

Figure 55 illustrates the flow of information between the web browser
and the ObjectSwitch application.

Apache and PHP software are freely available. In order to build Apache
and PHP, a number of GNU tools are required.

Please refer to $SW_HOME/OS.README.<version> file for details of
how to build Apache and PHP.

Refer to $SW_HOME/OS.3RDPARTY.<version> for the supported
version of Apache and PHP software.

Figure 55: PHP
extension architecture

)

ObS

ObjectSwitch
Node

ObS PHP
Engine (osw

Engine
being

accessed

php
Web
Driver

Web Server

PHP
Dynamic

Web
Pages

php ini
config
file

web
server
deamon

Web Browser
TCP/IP

Internet

.

TCP/IP

kabira.php
170

Chapter 5: Accessing ObjectSwitch through PHP
Command Line Utility
Command Line Utility
A shell script wrapper for the CGI version of PHP is shipped with the
release. The script name is “swphp”.

Usage
Usage: swphp [-p path] [-g var=value] script_file

-p Set runtime path (default .)
-g Set init value for $var in script.
Note: -g option must appear after all other options.

Like PHP scripts executed in a web browser, swphp also connects to the
osw engine to process ObjectSwitch extension functions. The swstart
command creates a php.ini file in the current directory. It has the
setttings for swphp to start up the ObjectSwitch extension within PHP.

The -p option tells swphp the directory path of where swstart was run. If
it is executed in the same directory as swstart, -p option can be omitted.

The -g option sets variable initial values in the PHP script.

Example
swphp -g sn=myPkg::myIfc -g opName=doIt run.php

<? php
// File: run.php
//
// no need to give host and port, swphp will find the
// right host and port from the registry.
//
$x_conn = os_connect();

//
// the value of $sn and $opName are set by -g option of swphp
//
$objr = os_create($x_conn, $sn);
$msg = os_invoke($x_conn, $objr, $opName);
os_delete($x_conn, $objr);
print "calling $sn $opName returns $msg\n";

?>
171

Chapter 5: Accessing ObjectSwitch through PHP
Execute PHP in action language
Execute PHP in action language
This capability is also known as “PHP callout”. The PHP interpreter is
modeled in the swmetadii package, an interface called PHP. The
implementation is built into osw engine.

package swmetadii
{

interface PHP
{

void executeScript(
in string scriptFile,
in NameValueList inParamList,
inout NameValueList outParamList)

raises (Failed);

void evalString(
in string scriptString,
in NameValueList inParamList,
inout NameValueList outParamList)

raises (Failed);
};

};

To build an an ObjectSwitch application that uses PHP callouts, you
need to import the osw component in your build specification as shown
below.

component MYCOMP
{

import osw;
...

};

If you are using the Visual Design Center you also need to import the
osw component and use the swmetadii package. See the online
documentation for the swmetadii package.
172

../../../userdoc/generic/components/swmetadii/index.html

Chapter 5: Accessing ObjectSwitch through PHP
Execute PHP in action language
The following action language segment shows how to use this
component to perform callouts to PHP scripts.

declare swmetadii::PHPcaller;
create caller;

declare swmetadii::NameValueListparamlist1;
declare swmetadii::NameValueListparamlist2;
declare swmetadii::NameValueparam;

param.name = "VarName";
param.value = "VarValue";
paramlist1[0] = param;

param.name = "outmsg";
param.value = "";
paramlist2[0] = param;

declare string scriptFile = "test.php";
try
{

caller.executeScript(scriptFile, paramlist1, paramlist2);
param = paramlist2[0];
if (param.value != “passed”)
{

// something went wrong.
}

}
catch (swmetadii::Failed e)
{

msg = e.emsg;
fprintf(stderr, "php call failed [%s]\n",msg.getCString());

}

173

Chapter 5: Accessing ObjectSwitch through PHP
Execute PHP in action language
The content of the PHP script “test.php” might look like the example
below:

<?php
if ($VarName == "VarValue")
{

print “in param has correct value\n”;
$outmsg = “passed”;

}
else
{

print “in param does not have correct value\n”;
$outmsg = “failed”;

}
?>
174

Chapter 5: Accessing ObjectSwitch through PHP
Transactions
Transactions
This section describes how transactions are managed when using the
PHP extensions.

The transaction boundary varies, depending on whether PHP scripts are
executed in a web browser, from the command line, or from action
language.

Web browser or command line transactionality

In a web browser or from a command line, each PHP extension
function call creates its own transaction. For instance,

$objr = os_create($conn_id, “myPkg::myIfc”);

When an os_create() call returns to the PHP script, two things have
already happened:

• an object has been created
• the transaction of creating the object has committed

The next call that uses $objr to invoke an operation will be in a separate
transaction.

The only way to ensure transactionality over a series of calls is to wrap
the calls in a single function in the ObjectSwitch model, then invoke
that one function from PHP. Suppose you want to write a PHP script
such as:

os_create(....);
os_set_attr(...);
os_relate(...);
...

If you want to make all of these calls execute in the same transaction,
you need to model these functions as a single operation in your
ObjectSwitch application, for example:

action create_and_relate()
{‘

create obj;
obj.name = “John”;
relate obj ... ;
...

‘};
175

Chapter 5: Accessing ObjectSwitch through PHP
Transactions
These functions will now be performed as a single transaction by
invoking the operation with os_invoke():

os_invoke(.., "create_n_relate()", ...);

Action language callout transactionality

When a PHP script is executed from within action language, it inherits
the transaction environment from the caller object. The extension
functions do not start their own transactions. Therefore the whole script
is executed in the same transaction.
176

Chapter 5: Accessing ObjectSwitch through PHP
A PHP example
A PHP example
This example demonstrates how to create object references, set and get
attributes, create and traverse relationship roles, and invoke operations
on an object using a PHP script.

There is a model with customers and orders, and PHP scripts to create
new customers, create new orders, and get customer balances.
177

Chapter 5: Accessing ObjectSwitch through PHP
A PHP example
The model

This section shows the UML and IDLos versions of the model used in
this example.

Figure 56:

OrderImpl

item : string
unitPrice : double
quantity : long

<<k abEnti ty>>

OrderLine

<<k abSequence>> : Order

<<kabTypedef>>
CustomerImpl

fi rstName : string<20>
lastName : string<20>
address : st ring

placeOrder()

<<kabEntity>>

Order

item : string
unitPrice : double
quantity : long

<<kabInterface>>

Realize Class Order

Customer

fi rstName : string<20>
lastName : string<20>
address : st ring

placeOrder()

<<kabInterface>>

Realize Class Customer

0..1

1..*

+placedBy

0..1

+places

1..*

CusOrd
178

Chapter 5: Accessing ObjectSwitch through PHP
A PHP example
package orderMngt
{

interface Order {
attribute string item;
attribute double unitPrice;
attribute long quantity;

};
entity OrderImpl {

attribute string item;
attribute double unitPrice;
attribute long quantity;

};
expose entity OrderImpl with interface Order;

typedef sequence<Order>OrderLine;

interface Customer {
attribute string<20> firstName;
attribute string<20> lastName;
attribute string address;
key PKey { firstName, lastName };

boolean placeOrder(inout Order ord);
};
entity CustomerImpl {

attribute string<20> firstName;
attribute string<20> lastName;
attribute string address;
key PKey { firstName, lastName };

boolean placeOrder(inout Order ord);
action placeOrder {`

if (empty ord) {
return false;

}
relate self places ord;
return true;

`};
};
expose entity CustomerImpl with interface Customer;

relationship CusOrd {
role Customer places 1..* Order;
role Order placedBy 0..1 Customer;

};
};
179

Chapter 5: Accessing ObjectSwitch through PHP
A PHP example
Example scripts

This section shows the PHP scripts for the example.

add_customer.php This PHP script adds a new customer.

<?php
$php_errormsg = ““;
$conn_id = os_connect();
if ($php_errormsg != ““)
{

print “connect to OSW failed: $php_errormsg\n”;
exit (-1);

}

$attrList = array (“firstName” => “John”,
“lastName” => “Smith”);

$typeName = “orderMngt::Customer”;

$cus = os_create($conn_id, $typeName, $attrList);
if ($php_errormsg != ““)
{

print “add customer John Smith failed: $php_errormsg\n”;
os_disconnect($conn_id);
exit(-1);

}

print “Added new customer John Smith”;

os_disconnect($conn_id);
?>

add_order.php This PHP script adds an order for an existing customer.

<?php
$php_errormsg = ““;
$conn_id = os_connect();
if ($php_errormsg != ““)
{

print “connect to OSW failed: $php_errormsg\n”;
exit (-1);

}

180

Chapter 5: Accessing ObjectSwitch through PHP
A PHP example
$attrList = array (“firstName” => “John”,
“lastName” => “Smith”);

$typeName = “orderMngt::Customer”;

$cusList = os_extent($conn_id, $typeName, $attrList);
if ($php_errormsg != ““)
{

print “find customer John Smith failed: $php_errormsg\n”;
os_disconnect($conn_id);
exit(-1);

}
if (count($cusList) == 0){

print “did not find John Smith”;
os_disconnect($conn_id);
exit(-1);

}

$attrList = array (“item” => “Apple”,
“unitPrice” => 0.99,
“quantity” => 50);

$typeName = “orderMngt::Order”;

$ord = os_create($conn_id, $typeName, $attrList);
if ($php_errormsg != ““)
{

print “create order failed: $php_errormsg\n”;
os_disconnect($conn_id);
exit(-1);

}

$params = array (“ord” => $ord);
$cus = $cusList[0];
$status = os_invoke($conn_id, $cus, “placeOrder”, $params);
if (! $status)
{

print “place order for John Smith failed\n”;
os_disconnect($conn_id);
exit(-1);

}

print “added order for John Smith\n”;

os_disconnect($conn_id);

?>
181

Chapter 5: Accessing ObjectSwitch through PHP
A PHP example
get_balance.php This script gets the current balance for an existing
customer’s account.

<?php
$php_errormsg = ““;
$conn_id = os_connect();
if ($php_errormsg != ““)
{

print “connect to OSW failed: $php_errormsg\n”;
exit (-1);

}

$attrList = array (“firstName” => “John”,
“lastName” => “Smith”);

$typeName = “orderMngt::Customer”;

$cusList = os_extent($conn_id, $typeName, $attrList);
if ($php_errormsg != ““)
{

print “find customer John Smith failed: $php_errormsg\n”;
os_disconnect($conn_id);
exit(-1);

}
if (count($cusList) == 0){

print “did not find John Smith”;
os_disconnect($conn_id);
exit(-1);

}

$orderList = os_role($conn_id, $cusList[0], “places”);

$total = 0.0;

for ($i = 0; $i < count($orderList); $i++)
{

$attrList = os_get_addr($conn_id, $orderList[$i]);
$unitPrice = $attrList[“unitPrice”];
$quantity = $attrList[“quantity”];

$total += $unitPrice * $quantity;
}

print “send a bill to John Smith for $tota\n”;

os_disconnect($conn_id);

?>
182

Part Two: ObjectSwitch
Reference

185

6 Lexical and syntactic fundamentals

This chapter describes the basic lexical rules of IDLos. These rules
follow the IDL (version 2.2). This also applies to action language and
build specifications, so you’ll need to understand the rules whether
you’re modeling textually or graphically.

The chapter covers the character set, tokens, white space, comments,
pre-processing directives, and the syntax for properties.

Character set

IDLos supports the ISO Latin-1 (8859.1) character set. This consists of:

Decimal digits These are: 0 1 2 3 4 5 6 7 8 9

Graphic characters The graphic characters are: ! “ # $ % & ‘ () * + = .
/ : ; < = > ? @ [\] ^ _ ‘ { | } ~ , plus the extended set.

Formatting characters The formatting characters are: BEL, BS, HT, LF
NL, VT, FF, CR.

Alphabetic characters The alphabetic characters are a-z and A-Z. plus
these: àÀ áÁ âÂ ãÃ äÄ åÅ æÆ çÇ èÈ éÉ êÊ ëË ìÌ íÍ îÎ ïÏ ñÑ òÒ óÓ ôÔ
õÕ öÖ øØ ùÙ úÚ ûÛ üÜ ÿ and the Icelandic thorn and eth characters,
both capital and lowercase.

186

Chapter 6: Lexical and syntactic fundamentals

Tokens

There are five kinds of tokens: keywords, identifiers, literals, operators
and other separators.

Keywords The following table lists all the keywords reserved by
IDLos; keywords that do not occur in IDL are shown in bold.

Although this is a large table, there are only about 20 statements that
need to be defined in the IDLos reference pages. IDLos really is a small
language; many of the statements use two or three keywords, and there
are 14 basic types of keywords. The trigger statement alone uses 11
keywords.

The keywords context, fixed, native, wchar and wstring are
parsed, but are not used by ObjectSwitch Design Center at this time.

abort fixed relationship
abstract float role
action from sequence
annotation ignore singleton
any in short
attribute initialize signal
boolean inout stateset
cannothappen interface string
case key struct
char local switch
commit long terminate
const module to
context native transition
create Object trigger
createaccess octet true
default oneway TRUE
delete out typedef
deleteaccess package unsigned
double post-get union
during post-set unrelate
enum pre-get upon
entity pre-set using
exception raises void
expose readonly wchar
extentaccess refresh with
false recovery wstring
FALSE relate virtual
finished

Chapter 6: Lexical and syntactic fundamentals

187

Identifiers An identifier is an arbitrarily long sequence of alphabetic,
digit, and underscore (“_”) characters. The first character must be an
alphabetic character. Only one of the letters A-Z or a-z may be used as
the first character. Identifiers are case sensitive.

Unlike IDL, identifiers in IDLos are case sensitive.

If you need to use a keyword as an IDLos identifier, you can delimit it
with quotation marks, for example:

entity purchase
{
 attribute long amount;
 attribute boolean “commit”;
}
...
declare purchase p;
create p;
p.”commit”=FALSE;

You can use any IDLos or action language keyword as a quoted IDLos
identifier, unless it is also a C++ or IDL reserved word. Be aware that in
some cases this can lead to ambiguity, for example:

void myAction(in long “commit”); // quoted keyword as parameter
...
 // if the action contains this expression
if (“commit” == 1) // then “commit” is parsed as a string literal
 // and not as the input parameter

Literals Literals may be integer, character, floating point, string, or
boolean:

integer A sequence of numerals beginning with 0 (e.g. 077) is inter-
preted as an octal number. A sequence of numerals beginning
with any other number (e.g. 63) is interpreted as a decimal
number. A sequence of numerals prefixed with 0x or 0X (e.g.
0x3F) is interpreted as a hexadecimal number. Hexadecimals
may use a-f or A-F. A sequence of numerals appended with LL
is interpreted as a 64-bit integer (long long).

character A character literal is enclosed in single quotes (e.g. ‘Z‘).
Standard IDL escapes are allowed, such as ‘\n’ for newline and
‘\x67’ for hexadecimal rendition. There is no support for wide
character literals at this time.

188

Chapter 6: Lexical and syntactic fundamentals

Escape sequences The following table defines the escape sequences

Operators The operator tokens in IDLos are: - + ~ = ! || && / * () ?.

floating point A floating point literal consists of an integer part, a decimal
point, a fraction part, and e or E, and an optionally signed inte-
ger exponent (e.g. 1.024+e13). The decimal point or the
exponent may be missing, but not both. The integer part or
the fraction part may be missing, but not both.

string String values are placed in double quotes (e.g. “This is a
string”). Adjoining strings are concatenated to form long
strings. Newlines and other characters must be embedded
with escape sequences.

boolean A boolean literal: TRUE, true, FALSE, or false.

Description Escape sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \’

double quote \”

value of character in octal \ooo

value of character in hexadeci-
mal

\xhh

Chapter 6: Lexical and syntactic fundamentals

189

Other separators Other separators in IDLos are:

• preprocessor token #
• action language delimiter ‘
• statement delimiter ;
• list delimiter ,
• inheritance delimiter :
• scoping delimiter ::
• block grouping { }
• list grouping ()
• array definition, property grouping []
• sequence declaration < >
• comment tokens // /* */
• role multiplicity delimiter ..

White space

White space is comprised of blanks, horizontal and vertical tabs,
newlines, formfeeds and comments. White space is ignored except as it
serves to separate tokens. For example, when an inherited interface
must be scoped

interface A : ::SomePackage::B {}; // correct
interface B :::SomePackage::B {}; // wrong! ::: causes error

Comments

Single line comments start with // and continue to a newline. C-style
comments start with a /* and continue until a */, and may include
newlines.

Comments do not nest. Once a comment has started, all comment
delimiters are ignored except the end delimiter for that style of
comment.

190

Chapter 6: Lexical and syntactic fundamentals

Preprocessing directives

The following preprocessing directives are supported. Any other line
where the first non-white space character is ‘#’ is ignored.

ObjectSwitch IDLos supports #include “headerfile.h”. The IDLos
loader adds the local directory "." to the include path so there is no
difference between #include <headerfile.h> and #include
"headerfile.h". This differs from normal cpp rules for #include.

#include When #include is the first non-white
space on a line, the text after the #include
is interpreted as a file name and will be
included at that point in the text. The file is
processed as IDLos.

#pragma include Include the specified file in the generated
output. The file won’t be parsed by the
IDLos loader.

The next chapter describes the ObjectSwitch type system.

7 ObjectSwitch types

This chapter describes the ObjectSwitch type system.

Types are labels that specify what category of information a symbol
indicates. Usually one category is not comparable with another (for
example, a string is not comparable with a float). ObjectSwitch uses
the IDL (version 2.2) type system, which provides a rich system of
basic and user-defined types.

For each type, there is a brief description of the semantics of the type,
and, where appropriate, how to specify the type in the Visual Design
Center, IDLos and/or Action Language. That will be followed by one
or more examples, and any general information.
191

Chapter 7: ObjectSwitch types
The following types are supported by ObjectSwitch. Simple types are
marked with an asterix(*).

• any*
• array
• boolean*
• bounded sequence
• bounded string
• bounded wstring
• char*
• const
• context
• double*
• entity
• enum
• exception
• extern
• fixed*
• float*
• interface
• long*
• long double*
• long long*
• native
• Object
• octet*
• pipe
• sequence
• short*
• string
• struct
• typedef
192

Chapter 7: ObjectSwitch types
• union
• unsigned long*
• unsigned long long*
• unsigned short*
• void
• wchar
• wstring
193

Chapter 7: ObjectSwitch types
any
any

Semantics

The type any is an IDL simple type. It can hold any simple IDLos type.
An any logically contains a TypeCode, and a value that is described by
the TypeCode.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select any.

Figure 57: Create a
class attribute of type

“any”

NewClass

name : any

<<kabEntity>>
194

Chapter 7: ObjectSwitch types
any
To create a sequence or array of type any, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type any. Click on the Edit button and set the Stereotype to kabArray,
kabSequence or kabSequenceOfArray. Click the Sequences tab and set
the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type any with:

attribute any name;

Inside of an entity block, define an array attribute “name” of type any
with:

attribute any name[5];

Inside of an entity block, define a sequence “name” of type any with:

typedef sequence<any> name;

Inside of an entity block, define a bounded sequence “name” of type
any with:

typedef sequence<any, 5> name;

Figure 58: Create an
array of type “any”

AnyArray

<<kabArray>> Name_Not_Used : any

<<kabTypedef>>

NewClass

name : ::NewPackage::AnyArray

<<kabEntity>>
195

Chapter 7: ObjectSwitch types
any
Action language syntax

Inside of an action language function, allocate a handle “name” of type
any with:

declare any name;

Inside of an action language function, allocate an array “name” of type
any with:

declare any name[5];

Example
declare any myAny;
declare any myAny2;
declare string str;
declare string str2;
str = ”A string lives here.”;
myAny <<= str;
myAny2 = myAny;
myAny2 >>= str2;

General Information

You must unpack an any into a C-style array in order to pass it to a C++
function call.

Operator Descriptions:

The any is always the first operand of the insertion and extraction
operators.

If there is a type mismatch between the value contained in an any and
the target of an extraction operator, the following exception occurs:

swbuiltin::ExceptionAnyTypeMismatch

= Assigns one any to another any

<<= Inserts a value into an any.

>>= Extracts a value from an any.
196

Chapter 7: ObjectSwitch types
any
You should wrap an extraction operation in a try-catch block that
catches the above exception.

action myPackage::myEntity::myOp
{`
 declare any myAny;
 declare string str;
 str = ”A string lives here.”;
 myAny <<= str;
 ...
 try
 {
 myAny >>= str;
 printf(”%s\n”, str.getCString());
 }
 catch (swbuiltin::ExceptionAnyTypeMismatch)
 {
 printf(”A string doesn't live here any more.\n”);
 }
`};
197

Chapter 7: ObjectSwitch types
array
array

Semantics

The type array is an IDL composite type. It represents a known-length
series of a single type. An array must be named by a typedef
declaration in order to be used as a parameter, an attribute, or a return
value. You can omit a typedef declaration only for an array that is
declared within a structure definition.

Visual Design Center syntax

See Visual Design Center syntax for a simple type, such as any.

IDLos syntax

See IDLos syntax for a simple type, such as any.

Action language syntax

 See Action language syntax for a simple type, such as any.

Example

This struct defines 256x256 array of 8-bit octets to hold an image:

struct SmallImage
{
 octet pixel[256][256];
};

General Information

You must unpack an array into a C-style array in order to pass it to C++
function call.

IDLos and Action Language support any number of dimensions. All
dimensions in an array must be bounded. To define an array with
unbounded dimensions, use a sequence.
198

Chapter 7: ObjectSwitch types
boolean
boolean

Semantics

The type boolean is an IDL simple type. It represents a data item that
can only be assigned the values of true or false.

Visual Design Center syntax

Select an appropriate class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select boolean.

To create a sequence or array of type boolean, open a kabTypedef
class specification. Click on the Attributes tab and select an attribute
of type boolean. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type boolean
with:

attribute boolean name;

Inside of an entity block, define an array “name” of type boolean with:

attribute boolean name[5];

Inside of an entity block, define a sequence “name” of type boolean
with:

typedef sequence<boolean> name;

Inside of an entity block, define a bounded sequence “name” of type
boolean with:

typedef sequence<boolean, 5> name;
199

Chapter 7: ObjectSwitch types
boolean
Action language syntax

Inside of an action language function, allocate a handle “name” of type
boolean with:

declare boolean name;

Inside of an action language function, allocate an array “name” of type
boolean with:

declare boolean name[5];

Example
declare boolean result;
result = true;
200

Chapter 7: ObjectSwitch types
bounded sequence
bounded sequence

Semantics

The type bounded sequence is an IDL template type. Bounded
sequences can hold any number of elements, up to the limit specified
by the bound. A bounded sequence must be named by a typedef
declaration in order to be used as a parameter, an attribute, or a return
value. You can omit a typedef declaration only for a sequence that is
declared within a structure definition.

Visual Design Center syntax

See Visual Design Center syntax for a simple type, such as any.

IDLos syntax
typedef sequence<any,5> name;

Action language syntax

Sequences cannot be defined other than as a typedef or as a member
of a struct or exception.

Example
const long constBoundsValue = 50;
typedef string stringArray[constBoundsValue];
typedef sequence<stringArray,constBoundsValue>
boundedSeqOfStringArrays;
struct LimitedAccounts {
 string bankSortCode<10>;
 sequence<Account, 50> accounts; // max sequence length is 50
};

General Information

You must unpack into a C-style array in order to pass to C++ function
call. An attribute length represents the current length of the sequence
at runtime.
201

Chapter 7: ObjectSwitch types
bounded string
bounded string

Semantics

The type bounded string is an IDL template type. It is a series of any
number of possible 8-bit quantities except 0x00, up to the limit specified
by the bound.

Visual Design Center syntax

Select an appropriate class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select string. Click
on the Edit button and change the type to string<value>, where value
is the bound.

IDLos syntax

You may define a bounded string anywhere you can define a simple
type.

attribute string<1024> buffer;

Action language syntax
declare string<10> myString;

Example
struct ShortMessagePacket
 {
 string destination;
 string<1024> shortMessage;
 };
202

Chapter 7: ObjectSwitch types
bounded wstring
bounded wstring

Semantics

The type bounded wstring is an IDL template type. It it not used by
ObjectSwitch at this time.

Visual Design Center syntax

Select an appropriate class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select wstring.
Click on the Edit button and change the type to wstring<value>,
where value is the bounded value.

IDLos syntax

You may define a bounded wstring anywhere you can use a simple
type.

 struct ShortMessagePacket
 {
 wstring destination;
 wstring<1024> shortMessage;
 };

Action language syntax
declare wstring<10> wideLabel;

Example
struct ShortMessagePacket;
{
 wstring destination;
 wstring<1024> shortMessage;
};
declare wstring<1024> wideBuffer;
203

Chapter 7: ObjectSwitch types
char
char

Semantics

The type char is an IDL simple type. It is an 8-bit quantity that encodes
a single-byte character from any byte-oriented code set. The type char
can hold any value from the ISO Latin-1 character set. Code positions
0-127 are identical to ASCII. Code positions 128-255 are reserved for
special characters in various European languages, such as accented
vowels.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select char.

To create a sequence or array of type char, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type char. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type char with:

attribute char name;

Inside of an entity block, define an array “name” of type char with:

attribute char name[5];

Inside of an entity block, define a sequence “name” of type char with:

typedef sequence<char> name;

Inside of an entity block, define a bounded sequence “name” of type
char with:

typedef sequence<char, 5> name;
204

Chapter 7: ObjectSwitch types
char
Action language syntax

Inside of an action language function, allocate a handle “name” of type
char with:

declare char name;

Inside of an action language function, allocate an array “name” of type
char with:

declare char name[5];

Example
declare char name;
205

Chapter 7: ObjectSwitch types
const
const

Semantics

Used in conjunction with other IDL types, const assigns a symbol to an
unchanging value.

These types can be made const: boolean, char, double, float,
long, long long, short, string, unsigned long, unsigned long
long, unsigned short, wchar, wstring.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Constants tab and then click on the Add button to create a new constant
attribute. Click on the Type pulldown selection and select one of the
available types.

IDLos syntax
entity name
{
 const short parm = 5;
};
206

Chapter 7: ObjectSwitch types
const
Example
const long numOfEnglishLetters = 26;
typedef string EnglishIndexURLs[numOfEnglishLetters];
entity htmlIndex
{
 attribute EnglishIndexURLs URLs;
 boolean getIndexURL(in long i, out string url);
 action getIndexURL
 {`
 if (i > = 0 && i < numOfEnglishLetters)
 {
 url = self.URLs[i];
 return true;
 }
 else
 {
 url = ””;
 return false;
 }
 `};
};

General Information

There is no such thing as an any constant value.

User-defined types, even those which define primitive types, cannot be
used to define constant values.
207

Chapter 7: ObjectSwitch types
context
context

Semantics

An IDL operation's context expression specifies which elements of the
client's context might affect the performance of a request by the object.
The runtime system makes the context values in the client's context
available to the object implementation when the request is delivered.
Context is not used by ObjectSwitch at this time.
208

Chapter 7: ObjectSwitch types
double
double

Semantics

The type double is an IDL simple type. It represents IEEE double-
precision floating point numbers. Types float and double follow IEEE
specifications for single- and double-precision floating point values, and
on most platforms map to native IEEE floating point types.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select double.

To create a sequence or array of type double, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type double. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type double
with:

attribute double name;

Inside of an entity block, define an array “name” of type double with:

attribute double name[5];

Inside of an entity block, define a sequence “name” of type double with:

typedef sequence<double> name;

Inside of an entity block, define a bounded sequence “name” of type
double with:

typedef sequence<double, 5> name;
209

Chapter 7: ObjectSwitch types
double
Action language syntax

Inside of an action language function, allocate a handle “name” of type
double with:

declare double name;

Inside of an action language function, allocate an array “name” of type
double with:

declare double name[5];

Example
declare double name;
210

Chapter 7: ObjectSwitch types
entity
entity

Semantics

The type entity is an IDL composite type.

With an entity, you can:

• define attributes and operations
• inherit from other entities
• define any number of relationships with other entities
• make it accessible to other packages using an interface
• trigger operations when it is created, deleted, refreshed, or related to

another entity
• define keys to use in queries
• manage its states with a finite state machine
• define types nested in the entity

Visual Design Center syntax

Open the specification for the class and select kabEntity as the class
stereotype.

IDLos syntax
entity name
{
 …
}

Example
entity TimerEventImpl
{
 // attributes
 attribute Road road;
 // operations
 oneway void generate ();
};
211

Chapter 7: ObjectSwitch types
entity
General Information

There is no “pure virtual” in IDLos. When you mark an operation
virtual, you still need to implement it in the supertype. You also must
implement the operation for all subtypes.
212

Chapter 7: ObjectSwitch types
enum
enum

Semantics

The type enum is an IDL composite type.

An enum (enumerated) type lets you assign identifiers to the members
of a set of values.

Visual Design Center syntax

Open the specification for the class and select kabEnum as the class
stereotype.

IDLos syntax
enum name { <list of values> };

Example
enum SideDirection {North, East, South, West};

This defines SideDirection as a type which takes on the values North,
East, South or West.

Action Language example:

enum SideDirection localDirection;
localDirection = East;

General Information

The actual ordinal values of a enum type vary according to the language
implementation. The CORBA specification only guarantees that the
ordinal values of enumerated types monotonically increase from left to
right. All enumerators are mapped to a 32-bit type.
213

Chapter 7: ObjectSwitch types
exception
exception

Semantics

The type exception is an IDL composite type.

The IDLos exception type itself is similar to a struct type; it can
contain various data members (but no methods).

An exception is used to alter the flow of control of a section of code.
When a method raises an exception, the method “returns” at that point
in its code. When the calling code receives the exception, control
passes to any matching catch blocks, or the exception is rethrown.

Uncaught user and system exceptions will cause a runtime engine
failure.

Visual Design Center syntax

Open the specification for the class and select kabException as the
class stereotype.

IDLos syntax
exception name { <attribute list> };

Example
exception IsDead { string causeOfDeath; };
void wakeup() raises (IsDead);

This defines the user exception IsDead as a type with attribute
causeOf Death. The function wakeup() can instantiate a variable of
type IsDead, set the value of causeOfDeath and throw the variable as a
user exception. To catch the above exception:

try { self.wakeup(); } catch (IsDead id) {...}

General Information

User exceptions are defined in IDLos. User exceptions defined in
IDLos cannot be inherited.
214

Chapter 7: ObjectSwitch types
exception
System exceptions are defined in swbuiltin.sdl. They can be raised by
the ObjectSwitch runtime and adapters. The user should not throw
System exceptions, but should catch them. To catch system exceptions
in action language, include swbuiltin.sdl in the model.

Handling the system exceptions ExceptionDeadlock and
ExceptionObjectDestroyed in application code not executed as part of
spawn will produce unpredictable but bad results.

Operations that throw an exception must have a raises clause in the
operation signature.

You must unpack an exception into a C-style array in order to pass it to
a C++ function call.

An exception definition cannot include itself as a member.
215

Chapter 7: ObjectSwitch types
extern
extern

Semantics

Designates global variables and/or code segments.

Visual Design Center syntax

Open the specification for the class and select kabExtern as the class
stereotype.

Action language syntax

This is a reserved word for C++.

Example
extern C { … }
216

Chapter 7: ObjectSwitch types
fixed
fixed

Semantics

The type fixed is an IDL template type. It provides fixed-point
arithmetic values with up to 31 significant digits. You specify a fixed
type with the following format:

typedef fixed< digit-size, scale > name;

Unlike IEEEE floating-point values, type fixed is not subject to
representational errors. IEEE floating point values are liable to
inaccurately represent decimal fractions unless the value is a fractional
power of 2. For example, the decimal value 0.1 cannot be represented
exactly in IEEE format. Over a series of computations with floating-
point values, the cumulative effect of this imprecision can eventually
yield inaccurate results. Type fixed is especially useful in calculations
that cannot tolerate any imprecision, such as computations of monetary
values. Type fixed is not used by ObjectSwitch Design Center at this
time.
217

Chapter 7: ObjectSwitch types
float
float

Semantics

The type float is an IDL simple type.

It represents IEEE single-precision floating point numbers. Types
float and double follow IEEE specifications for single- and double-
precision floating point values, and on most platforms map to native
IEEE floating point types.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select float.

To create a sequence or array of type float, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type float. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type float with:

attribute float name;

Inside of an entity block, define an array “name” of type float with:

attribute float name[<size>];

Inside of an entity block, define a sequence “name” of type float with:

typedef sequence<float> name;

Action language syntax

Inside of an action language function, allocate a handle “name” of type
float with:

declare float name;
218

Chapter 7: ObjectSwitch types
float
Inside of an action language function, allocate an array “name” of type
float with:

declare float name[<size>];

Example
declare float name;
219

Chapter 7: ObjectSwitch types
interface
interface

Semantics

Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that the
object supports in a distributed enterprise application.

An IDL interface generally describes an object’s behavior through
operations and attributes:

Operations of an interface give clients access to an object's behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,
whether it is in the same address space as the client, in another address
space on the same machine, or in an address space on a remote
machine.

An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

Visual Design Center syntax

Open the specification for the class and select kabInterface as the
class stereotype.

IDLos syntax
interface Employee
{
 // only these parts of EmployeeImpl will be
 // accessible outside the package.
 void promote();
 oneway void makewaves();
 attribute string name;
};
entity EmployeeImpl
{
 void promote();
 attribute string name;
 attribute string m_nickname;
 signal makewaves();
};
220

Chapter 7: ObjectSwitch types
interface
Example

In this example, the EmployeeImpl entity has two attributes, an
operation, and a signal. The interface exposes all but the m_nickname
attribute. Notice that the signal is exposed as an operation.

interface Employee
{
 // only these parts of EmployeeImpl will be
 // accessible outside the package.
 void promote();
 oneway void makewaves();
 attribute string name;
};
entity EmployeeImpl
{
 void promote();
 attribute string name;
 attribute string m_nickname;
 signal makewaves();
};
// This statement is self-explanatory.
expose entity EmployeeImpl with interface Employee;

General Information

An interface may also contain definitions for typedefs, attributes,
operations, enumerations, and structures.

Each interface may expose only one entity. An entity may be
exposed by more than one interface. Each operation or attribute in
the interface must have a corresponding attribute, operation or
signal in the entity.

Abstract interfaces may not contain attributes or typedefs.

To permit more control over how an entity is exposed, three properties
grant or revoke access to create, delete, or retrieve the extent of an
interface.
221

Chapter 7: ObjectSwitch types
long
long

Semantics

The type long is an IDL simple type. It represents 32-bit signed integer
values. IDL supports short and long integer types, both signed and
unsigned. IDL guarantees the range of these types.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select long.

To create a sequence or array of type long, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type long. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type long with:

attribute long name;

Inside of an entity block, define an array “name” of type long with:

attribute long name[size];

Inside of an entity block, define a sequence “name” of type long with:

typedef sequence<long> name;

Action language syntax

Inside of an action language function, allocate a handle “name” of type
long with:

declare long name;

Inside of an action language function, allocate an array “name” of type
long with:

declare long name[<size>];
222

Chapter 7: ObjectSwitch types
long
Example
declare long name;
223

Chapter 7: ObjectSwitch types
long double
long double

Semantics

The type long double is an IDL extended simple type.

Like 64-bit integer types, platform support varies for long double, so
usage can yield IDL compiler errors.

The type long double is not currently supported by ObjectSwitch.
224

Chapter 7: ObjectSwitch types
long long
long long

Semantics

The type long long is an IDL simple type. IDL supports short and
long integer types, both signed and unsigned. IDL guarantees the
range of these types.

The long long type represents 64-bit signed integer values.

The 64-bit integer types long long and unsigned long long support
numbers that are too large for 32-bit integers. Platform support varies.
If you compile IDL that contains one of these types on a platform that
does not support it, the compiler issues an error.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select long long.

To create a sequence or array of type long long, open a kabTypedef
class specification. Click on the Attributes tab and select an attribute
of type long long. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type long long
with:

attribute long long name;

Inside of an entity block, allocate an array “name” of type long long
with:

attribute long long name[<size>];

Inside of an entity block, define a sequence “name” of type long long
with:

typedef sequence<long long> name;
225

Chapter 7: ObjectSwitch types
long long
Action language syntax

Inside of an action language function, allocate a handle “name” of type
long long with:

declare long long name;

Inside of an action language function, allocate an array “name” of type
long long with:

declare long long name[<size>];

Example
declare long long name;
226

Chapter 7: ObjectSwitch types
native
native

Semantics

Indicates a platform specific class. It is not used by ObjectSwitch
Design Center at this time

Visual Design Center syntax

Open the specification for the class and select kabNative as the class
stereotype.
227

Chapter 7: ObjectSwitch types
Object
Object

Semantics

The type Object is an IDL simple type. It represents a reference to a
user-defined interface or entity.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select Object.

To create a sequence or array of type Object, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type Object. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type Object
with:

attribute Object name;

Action language syntax

Inside of an action language function, allocate a handle “name” of type
Object with:

declare Object name;

Inside of an action language function, allocate an array “name” of type
Object with:

declare Object name[<size>];

Example
declare Object name;
228

Chapter 7: ObjectSwitch types
Object
General Information

You must unpack the type Object into a C-style array in order to pass it
to a C++ function call.
229

Chapter 7: ObjectSwitch types
octet
octet

Semantics

The type octet is an IDL simple type.

It represents an 8-bit quantity guaranteed not to undergo any
conversion when transmitted by the communication system. This lets
you safely transmit binary data between different address spaces. Avoid
using type char for binary data, inasmuch as characters might be
subject to translation during transmission. For example, if client that
uses ASCII sends a string to a server that uses EBCDIC, the sender
and receiver are liable to have different binary values for the string's
characters.

Visual Design Center syntax

Select the kabEntity class and open the specification. Click on the
Attributes tab and then click on the Add button to create a new
attribute. Click on the Type pulldown selection and select octet.

To create a sequence or array of type octet, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type octet. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type octet with:

attribute octet name;

Inside of an entity block, define a sequence “name” of type octet with:

typedef sequence<octet> name;

Action language syntax

Inside of an action language function, allocate a handle “name” of type
octet with:

declare octet name;
230

Chapter 7: ObjectSwitch types
octet
Inside of an action language function, allocate an array “name” of type
octet with:

declare octet name[<size>];

Example
declare octet name;
231

Chapter 7: ObjectSwitch types
pipe
pipe

Semantics

The type pipe is an IDL composite type. It is not supported by
ObjectSwitch.
232

Chapter 7: ObjectSwitch types
sequence
sequence

Semantics

The type sequence is an IDL template type. It represents an array with
unbounded dimensions. Unbounded sequences are automatically
grown at runtime as required. If the index being accessed is larger
than the current sequence size, the sequence is resized. When a
sequence is resized, the values of all new sequence members are
undefined. They must be initialized to a known value by the application.

A sequence must be named by a typedef declaration in order to be
used as a parameter, an attribute, or a return value. You can omit a
typedef declaration only for a sequence that is declared within a
structure definition.

Visual Design Center syntax

See Visual Design Center syntax for a simple type, such as any.

IDLos syntax
typedef sequence<string> NameList;

Example
const long constBoundsValue = 50;
typedef string stringArray[constBoundsValue];
typedef sequence<stringArray> SeqOfStringArrays;
struct UnlimitedAccounts
{
 string bankSortCode<10>;
 sequence<Account> accounts; // no max sequence length
};

General Information

You must unpack a sequence into a C-style array in order to pass it to a
C++ function call. Sequences cannot be defined other than as a
typedef or as a member of a struct or exception. An attribute length
represents the current length of the sequence at runtime.
233

Chapter 7: ObjectSwitch types
short
short

Semantics

The type short is an IDL simple type. It represents 16-bit signed
integer values. IDL supports short and long integer types, both signed
and unsigned. IDL guarantees the range of these types. For example,
an unsigned short can hold values between 0-65535. Thus, an unsigned
short value always maps to a native type that has at least 16 bits. If the
platform does not provide a native 16-bit type, the next larger integer
type is used.

Visual Design Center syntax

In Visual Design Center, select the kabEntity class and open the
specification. Click on the Attributes tab and then click on the Add
button to create a new attribute. Click on the Type pulldown selection
and select short.

To create a sequence or array of type short, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type short. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type short with:

attribute short name;

Inside of an entity block, allocate an array “name” of type short with:

attribute short name[<size>];

Inside of an entity block, define a sequence “name” of type short with:

typedef sequence<short> name;
234

Chapter 7: ObjectSwitch types
short
Action language syntax

Inside of an action language function, allocate a handle “name” of type
short with:

declare short name;

Inside of an action language function, allocate an array “name” of type
short with:

declare short name[<size>];

Example
declare short name;
235

Chapter 7: ObjectSwitch types
string
string

Semantics

The type string is an IDL template type. It is a series of all possible 8-
bit quantities except 0x00. IDL prohibits embedded NUL characters in
strings. Unbounded string lengths are generally constrained only by
memory limitations.

A bounded string, such as string<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL
character. Thus, a string<6> can contain the six-character string
“cheese”.

Visual Design Center syntax

In Visual Design Center, select an appropriate class and open the
specification. Click on the Attributes tab and then click on the Add
button to create a new attribute. Click on the Type pulldown selection
and select string.

IDLos syntax
attribute string name;

Action language syntax
declare string name;

Example
typedef string myString;
attribute myString shortName;

General Information

An attribute length represents the current length of the string at
runtime.
236

Chapter 7: ObjectSwitch types
struct
struct

Semantics

The type struct is an IDL composite type. A struct data type lets you
encapsulate a set of named members of various types.

Visual Design Center syntax

Open the specification for the class and select kabStruct as the class
stereotype.

IDLos syntax
struct AStruct
{
 long aLongMember;
 short aShortMember;
};

Action language syntax
declare AStruct aStruct;
aStruct.aLongMember = 76543;

Example
struct Packet
{
 long destination;
 octet data[256];
 boolean retry;
};

This defines Packet as a type with members destination, data and retry.
237

Chapter 7: ObjectSwitch types
struct
For structs, you can define the types of their members in-line.

struct A
{
 boolean firstMember;
 struct B
 {
 unsigned long a;
 long b;
 string c;
 } secondMember;
 long thirdMember;
};

General Information

You must unpack a struct into a C-style array in order to pass to C++
function call. A struct must include at least one member. Because a
struct provides a naming scope, member names must be unique only
within the enclosing structure.

Recursive definitions of a struct are not allowed. A C-like workaround
is available, e.g.,

struct nodeList
{
 string name;
 typedef sequence<nodeList> NextNode;
 NextNode nextNode;
};
238

Chapter 7: ObjectSwitch types
typedef
typedef

Semantics

A typedef lets you define a new legal type; The typedef keyword
allows you define a meaningful or simpler name for an IDL type.

Visual Design Center syntax

Open the specification for the class and select kabTypedef as the class
stereotype.

IDLos syntax
typedef sequence<unsigned long> name;

Example
typedef enum status {started, finished} racerStatus;

General Information

You may rename any legal type. In a typedef, you can define a
sequence, struct, or enum in-line.
239

Chapter 7: ObjectSwitch types
union
union

Semantics

The type union is an IDL composite type. A union type lets you define
a structure that can contain only one of several alternative members at
any given time. All IDL unions are discriminated.

Visual Design Center syntax

Open the specification for the class and select kabUnion as the class
stereotype.

For multiple labels, enter a list of labels in the caseSpecifier field of the
attribute specification dialog. For example, for the equivalent of the
IDLos:

 case 'S':
 case 's':
 string aString;

you would enter 'S','s' in the caseSpecifier field.

IDLos syntax

You declare a union type with the following IDL syntax:

union name switch (discriminator)
{
 case label1 : element-spec;
 case label2 : element-spec;
 [...]
 case labeln : element-spec;
 [default : element-spec;]
};

Action language syntax
union MyUnion switch (char)
240

Chapter 7: ObjectSwitch types
union
Example

You can access the value of the discriminator in action language using
the special _d attribute:

union MyUnion switch (char)
{
 case 'S':
 case 's':
 string aString;
 case 'L':
 case 'l':
 long aLong;
 default:
 long justANumber;
};

enum Direction
{
 North;
 South:
 East;
 West;
};
union DirectionUnion switch (Direction)
{
 case South:
 case North:
 long latitude;
 case East:
 case West:
 long longitude;
};
struct ComplexStructure
{
 string name;
 MyUnion myUnion;
};
...
declare MyUnion mu;
mu.aString = ”some data”;
...
if (mu._d == 'S' || mu._d == 's')
{
 // it's a string
}

241

Chapter 7: ObjectSwitch types
union
You can also set the discriminator...

mu._d = 'L';

...but ObjectSwitch does not check that you are setting the
discriminator to a legitimate value.

You can also set the union to null...

declare DirectionUnion geoLine;
geoLine = isnull;

To handle a union in a complex structure, you must declare a local
union to set and then move it as a whole into the structure...

declare ComplexStruct myStruct;
declare MyUnion mu;
myStruct.name = “Joe”;
mu.aLong;
myStruct.myUnion = mu;

General Information

The union is stored at runtime as an array of slots for each union
member. This storage is not optimized; the runtime size of a union is
simply the sum of the union members.

The above means that unions are not the best choice for systems where
small size, or high performance are important. Avoid using unions as a
placeholder for incomplete analysis; try to use them only when they are the
best solution to a problem.

The ObjectSwitch Monitor displays the discriminator and the current
values of all the union members.

If you access an “incorrect” union member (that is, the discriminator
indicates another union member is active), the accessor throws an
ExceptionDataError system exception.

A struct, union, or exception definition cannot include itself as a
member.

A union's discriminator can be integer, char, boolean or enum, or an
alias of one of these types; all case label expressions must be
compatible with this type. Because a union provides a naming scope,
242

Chapter 7: ObjectSwitch types
union
member names must be unique only within the enclosing union.
Unions allow multiple case labels for a single member. Unions can
optionally contain a default case label. The corresponding member is
active if the discriminator value does not correspond to any other label.
243

Chapter 7: ObjectSwitch types
unsigned long
unsigned long

Semantics

The type unsigned long is an IDL simple type. It represents 32-bit
unsigned integer values.

Visual Design Center syntax

In Visual Design Center, select the kabEntity class and open the
specification. Click on the Attributes tab and then click on the Add
button to create a new attribute. Click on the Type pulldown selection
and select unsigned long.

To create a sequence or array of type unsigned long, open a
kabTypedef class specification. Click on the Attributes tab and select
an attribute of type unsigned long. Click on the Edit button and set
the Stereotype to kabArray, kabSequence or kabSequenceOfArray.
Click the Sequences tab and set the dimensions of the sequence or
array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type unsigned
long with:

attribute unsigned long name;

Inside of an entity block, allocate an array “name” of type unsigned
long with:

attribute unsigned long name[<size>];

Inside of an entity block, define a sequence “name” of type unsigned
long with:

typedef sequence<unsigned long> name;

Action language syntax

Inside of an action language function, allocate a handle “name” of type
unsigned long with:

declare unsigned long name;
244

Chapter 7: ObjectSwitch types
unsigned long
Inside of an action language function, allocate an array “name” of type
unsigned long with:

declare unsigned long name[<size>];

Example
declare unsigned long name;
245

Chapter 7: ObjectSwitch types
unsigned long long
unsigned long long

Semantics

The type unsigned long long is an IDL simple type. It represents 64-
bit unsigned integer values. IDL supports short and long integer types,
both signed and unsigned. IDL guarantees the range of these types.

Visual Design Center syntax

In Visual Design Center, select the kabEntity class and open the
specification. Click on the Attributes tab and then click on the Add
button to create a new attribute. Click on the Type pulldown selection
and select unsigned long long.

To create a sequence or array of type unsigned long long, open a
kabTypedef class specification. Click on the Attributes tab and select
an attribute of type unsigned long long. Click on the Edit button and
set the Stereotype to kabArray, kabSequence or kabSequenceOfArray.
Click the Sequences tab and set the dimensions of the sequence or
array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type unsigned
long long with:

attribute unsigned long long name;

Inside of an entity block, define an array attribute “name” of type
unsigned long long with:

attribute unsigned long long name[<size>];

Inside of an entity block, define a sequence “name” of type unsigned
long long with:

typedef sequence<unsigned long long> name;
246

Chapter 7: ObjectSwitch types
unsigned long long
Action language syntax

Inside of an action language function, allocate a handle “name” of type
unsigned long long with:

declare unsigned long long name;

Inside of an action language function, allocate an array “name” of type
unsigned long long with:

declare unsigned long long name[<size>];

Example
declare unsigned long long name;
247

Chapter 7: ObjectSwitch types
unsigned short
unsigned short

Semantics

The type unsigned short is an IDL simple type. It represents 16-bit
unsigned integer values. IDL supports short and long integer types,
both signed and unsigned. IDL guarantees the range of these types.

Visual Design Center syntax

In Visual Design Center, select the kabEntity class and open the
specification. Click on the Attributes tab and then click on the Add
button to create a new attribute. Click on the Type pulldown selection
and select unsigned short.

To create a sequence or array of type unsigned short, open a
kabTypedef class specification. Click on the Attributes tab and select
an attribute of type unsigned short. Click on the Edit button and set
the Stereotype to kabArray, kabSequence or kabSequenceOfArray.
Click the Sequences tab and set the dimensions of the sequence or
array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type unsigned
short with:

attribute unsigned short name;

Inside of an entity block, define an array attribute “name” of type
unsigned short with:

attribute unsigned short name[<size>];

Inside of an entity block, define a sequence “name” of type unsigned
short with:

typedef sequence<unsigned short> name;
248

Chapter 7: ObjectSwitch types
unsigned short
Action language syntax

Inside of an action language function, allocate a handle “name” of type
unsigned short with:

declare unsigned short name;

Inside of an action language function, allocate an array “name” of type
unsigned short with:

declare unsigned short name[<size>];

Example
declare unsigned short name;
249

Chapter 7: ObjectSwitch types
void
void

Semantics

The type void is an IDL simple type.

The void keyword is valid only in an operation. In an operation
declaration, it may be used to indicate an operation that does not return
a function result value.

Visual Design Center syntax

In Visual Design Center, select the kabEntity class and open the
specification. Click on the Operations tab and then click on the Add
button to create a new operation. Click on the Return Type pulldown
selection and select void.

IDLos syntax
void myOperation(in myParm);

Example
void myOperation(in myParm);
250

Chapter 7: ObjectSwitch types
wchar
wchar

Semantics

The type wchar is an IDL simple type. It encodes wide characters from
any character set. The size of a wchar is platform-dependent.

Visual Design Center syntax

In Visual Design Center, select the kabEntity class and open the
specification. Click on the Attributes tab and then click on the Add
button to create a new attribute. Click on the Type pulldown selection
and select wchar.

To create a sequence or array of type wchar, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type wchar. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type wchar with:

attribute wchar name;

Inside of an entity block, define an array “name” of type wchar with:

attribute wchar name[<size>];

Inside of an entity block, define a sequence “name” of type wchar with:

typedef sequence<wchar> name;

Action language syntax

Inside of an action language function, allocate a handle “name” of type
wchar with:

declare wchar name;

Inside of an action language function, allocate an array “name” of type
wchar with:

declare wchar name[<size>];
251

Chapter 7: ObjectSwitch types
wchar
Example
declare wchar name;
252

Chapter 7: ObjectSwitch types
wstring
wstring

Semantics

The type wstring is an IDL template type. It is the wide-character
equivalent of type string. Like string-types, wstring types can be
unbounded or bounded. Wide strings can contain any character except
NUL.

Since the ObjectSwitch implementation of the string type also allows
for multi-byte strings, there is little difference between string and
wstring. The only current difference is that wstrings cannot be
compared as greater-than or less-than other wstrings.

Visual Design Center syntax

In Visual Design Center, select the kabEntity class and open the
specification. Click on the Attributes tab and then click on the Add
button to create a new attribute. Click on the Type pulldown selection
and select wstring.

To create a sequence or array of type wstring, open a kabTypedef class
specification. Click on the Attributes tab and select an attribute of
type wstring. Click on the Edit button and set the Stereotype to
kabArray, kabSequence or kabSequenceOfArray. Click the Sequences
tab and set the dimensions of the sequence or array.

IDLos syntax

Inside of an entity block, define an attribute “name” of type wstring
with:

attribute wstring name;

Inside of an entity block, define an array “name” of type wstring with:

attribute wstring name[<size>];

where <size> is an integer and is the number of bytes allocated for the
string, (which may not be the number of characters).
253

Chapter 7: ObjectSwitch types
wstring
Inside of an entity block, define a sequence “name” of type wstring
with:

typedef sequence<wstring> name;

Action language syntax

Inside of an action language function, allocate a handle “name” of type
wstring with:

declare wstring name;

Inside of an action language function, allocate an array “name” of type
wstring with:

declare wstring name[<size>];

Example
declare wstring name;
name = “a single-byte character string”;

There is no built in support for wide string literals.

The next chapter provides a reference to the IDLos textual modeling langauge..
254

255

8 IDLos Reference

This section contains reference pages for each IDLos statement, in
alphabetical order. Each page describes the syntax of the statement, a
discussion of usage, and an example.

The page for properties contains a table of all the IDLos properties.

Understanding the notation

The syntax description for each statement or function uses the
following conventions:

bold screen font indicates a literal item that appears exactly as
shown

italics indicates a language element that is defined elsewhere

plain text indicates a feature of the notation, as follows:

(item) parentheses group items together

(item)* the item in parentheses appears zero or more times

(item)+ the item in parentheses appears one or more times

{ item } items in braces are optional

(item1 | item2) the vertical bar indicates either item1 or item2 appears

256

Chapter 8: IDLos Reference

Common elements of the grammar

The following element of the IDLos grammar appear frequently
throughout the reference pages.

Grammar element Meaning

identifier any supported characters, digit, or underscore. Must
start with a-z or A-Z.

scoped_name {::} simple_declarator (:: simple_declarator)*

simple_declarator identifier

Chapter 8: IDLos Reference
Files and engines in IDLos

257

Files and engines in IDLos
This section discusses how IDLos can be arranged into files and
mapped to ObjectSwitch engines.

Files

Usually you will put one package in a file. But there is no restriction on
how IDLos packages are arranged in files except that each package
must be syntactically complete.

If a package name appears again in a model, IDLos reopens the
package and adds information to it. In this way, a package might be
divided up among many files. For example, you might have each
module from that package defined in its own file.

Actions might be defined in separate files. This is similar to the
arrangement of C++ implementations kept in different files than the
class definitions.

The Design Center does not care how your IDLos files are arranged.
Whether you have one file that #includes all the necessary files, or you
load each file by hand - the Design Center can build your model as long
as you have all the necessary packages loaded when you build your
engine.

When a package is declared more than once in IDLos, the package is
re-opened and modified on each subsequent declaration. More
information will be added to its definition each time that the package
name appears in the model.

Engines

You will usually put one package in a file and generate one engine from
that package.

Packages are mapped to engines using the ObjectSwitch Design
Center. There is no restriction in the Design Center on how many
packages can be built into one engine. You may compile as many
packages into an engine as you want.

When you partition ObjectSwitch applications into different components,
the package represents the smallest level of granularity you can use.

258

Chapter 8: IDLos Reference
Files and engines in IDLos

With the ObjectSwitch server, there is usually very little advantage to
putting packages in the same engine. An event bus dispatch to an
object on the same node is just as fast whether that object resides in the
same engine, or another. Of course, if engines are running on different
nodes, i.e. distributed, then there is a performance cost.

If your application is very message intensive, you can get a
performance gain by using as many local operations and local
entities as practical, since these are invoked directly, not through the
ObjectSwitch event bus.

Chapter 8: IDLos Reference
action

259

action
Defines the behavior of a state or an operation.

Syntax

action scoped_name {‘actionLanguage‘};

Description

The implementation of a state or action is defined in action language,
between the backquotes ‘. An action can be defined in an entity, a
module, a package, or outside of a package.

Warnings

None

Example
action ::Traffic::GUIProxyImpl::updateMode
// arguments:
//in ModeType modeType
//in RoadDirection modeDir
//
{`
 // some action language
`};

See also

operation, stateset.

260

Chapter 8: IDLos Reference
attribute

attribute
An object data member, and its accessors.

Syntax

[readonly] attribute param_type_spec simple_declarator;

Description

In an entity, the attribute defines a data member, a set accessor and a
get accessor. In an interface, the attribute exposes those same
accessors. readonly may only be specified in an interface. If the
attribute is readonly in the interface, only the get accessor is exposed.

Attributes are inherited. To expose the attribute in the interface, it must
match the attribute in the entity in both name and type.

Attributes cannot be structs or arrays. However, user-defined types defined
as structs or arrays can be attributes.

When an object is created, the values of its attributes are undefined.

Warnings

None

Example
attribute long timeGreen;
attribute LightColor colorTarget;

See also

trigger

Chapter 8: IDLos Reference
const

261

const
Defines a constant value.

Syntax

const const_type identifier = literal;

Description

literal must be a valid literal type: integer, character, floating point,
string, or boolean (see “Literals” on page 187 for more details).

Assigning literal to an identifier of type const_type must represent a
valid operation. const_type can be a scoped name. The following table
shows valid IDLos types for each literal type:

ObjectSwitch also performs implicit conversions between string and
numeric types in a const statement (see “Implicit conversion between
string and numeric types” for more details).

Warnings

None.

literal const_type

integer long | long long

character char | wchar

floating point float | double | long double

string string | wstring

boolean boolean

262

Chapter 8: IDLos Reference
const

Example
const long constBoundsValue = 50;
const char littleN = ‘n’;
const float smallFloat = 73.033e-32;
const string msg1233 = “Don’t do that!”;
const boolean SureThing = TRUE;

// used as bound in string, array and sequence
typedef string<constBoundsValue> boundedString;
typedef string stringArray[constBoundsValue];
typedef sequence<string, constBoundsValue> stringSequence;

Chapter 8: IDLos Reference
enum

263

enum
Defines a type whose values are a fixed set of tokens

Syntax

enum identifier {identifier (, identifier)*};

Description

Enums contain a comma-separated list of one or more enumerators,
which are just identifiers.

Warnings

None

Example
enum ModeType
{
 tyTimed,
 tySensed,
 tyHoldGreen,
 tyBlinkYellow,
 tyBlinkRed,
 tyNoChange
};

264

Chapter 8: IDLos Reference
entity

entity
Defines the implementations of objects.

Syntax

entity simple_declarator {: scoped_name} {(entityContent)*};

entity simple_declarator;

Description

The first syntax is for entity definition, the second for forward
declaration.

Entities can contain actions, attributes, enums, exceptions, keys,
operations, signals, transitions, statesets, structs, triggers, and
typedefs.

An entity statement may have annotation, local, and singleton
properties.

To make an entity accessible outside its package, expose the entity with
an interface. An entity may be exposed by more than one interface.

The : scoped_name following the entity declarator designates a
supertype for inheritance. Entities may inherit from other entities if
they are in the same package, and have the same value of their local
property.

Entities may have relationships to other entities in the same package.

Forward declares allow you to use an entity type before it is defined.

Warnings

Local entities have such a different description, they are covered on
their own page.

Multiple inheritance is not supported.

Chapter 8: IDLos Reference
entity

265

Example
// forward declares
entity TimerEventImpl;

// definitions
entity TimerEventImpl
 {
 attribute Road road;
 oneway void generate ();
};

See also

Local entity, trigger

266

Chapter 8: IDLos Reference
exception

exception
A user-defined type that can be thrown and caught upon error.

Syntax

exception identifier { (type_spec declarator;)*};

Description

Define exceptions when you need to report errors in your applications.

Warnings

None

Example
exception ExpFileNotFound
{
 string path;
 string filename;
};

See also

operation

action language throw, catch, and exceptions

Chapter 8: IDLos Reference
expose

267

expose
Specifies which entity an interface exposes.

Syntax

expose entity scoped_name with interface scoped_name;

Description

An expose statement may have the annotation property. An abstract
interface may not be used in an expose statement. You may define
expose statements in a package or module.

Warnings

None

Example
expose entity GuiProxyImpl with interface GuiProxy;

See also

interface, entity

268

Chapter 8: IDLos Reference
interface

interface
Interfaces provide access to entities for clients in other packages.

Syntax

interface simple_declarator {: scoped_name} {(interface_body)*};

interface simple_declarator;

Description

The first syntax is for interface definition. The second syntax is for
forward declaration.

Interfaces can contain attributes, enums, exceptions, operations,
structs, and typedefs.

Interfaces define what part of an entity gets exposed outside of the
package boundary. Everything has open access within a package.

Interfaces contain the attributes and operations of the entity that you
intend to expose to outside clients.

Signals are exposed as oneway void operations. They must be
implemented in the entity.

The : scoped_name following the interface declarator designates a
supertype for inheritance. Interfaces may inherit from other interfaces,
either within the same package or across package boundaries.

An interface statement may have abstract, annotation,
createaccess, deleteaccess, extentaccess, and singleton
properties.

You may also use interfaces for access to the entity from within the
package; but it is not necessary.

Warning

Relationships defined between interfaces are implemented between the
entities they expose. Interfaces may not participate in associative
relationships.

Chapter 8: IDLos Reference
interface

269

All attributes and operations listed in an interface must be defined in
the exposed entity.

Example
interface Employee
{
// only these parts of EmployeeImpl will be
// accessible outside the package.
 void promote();
 oneway void makewaves();
 attribute string name;
};

entity EmployeeImpl
{
 void promote();
 attribute string name;
 attribute string m_nickname;
 signal makewaves();
};
expose entity EmployeeImpl with interface Employee;

See also

entity, expose

270

Chapter 8: IDLos Reference
key

key
A list of attributes whose value uniquely identifies an entity.

Syntax

 key simple_declarator {simple_declarator (, simple_declarator) *};

Description

Each key is a named list of attributes.

A key can contain as many attributes as you want. Multiple keys may be
defined for a single entity.

A key statement may have the annotation property.

Warnings

Arrays, sequences, and unbounded strings are not valid in keys.

When a key is inherited (that is, if an entity containing a key has
subtypes), the index for the key is maintained in the type where the key
is defined. This means that keys must be unique across instances of
that type and all its subtypes.

Avoid modifying key attributes. If it is necessary to modify a attribute
which is part of a key, enclose the modifications in a try..catch() block.
This allows ObjectSwitch to update the keys immediately after they are
modified, and it lets you catch the ExceptionObjectNotUnique
exception that can be thrown when you change a key. If you don’t catch
this exception, the engine will crash.

Chapter 8: IDLos Reference
key

271

Here is an example of how you might use a temporary object when you
need to change an attribute which is part of a key:

entity KeyedEntity
{
 attribute long longAttr;
 key Key { longAttr };
};

. IDLos above, action language below

declare KeyedEntity keyedEntity;
declare long saveLongAttr;
// . . .
saveLongAttr = keyedEntity.longAttr;
try
{
 declare KeyedEntity tempKeyedEntity = keyedEntity;
 tempKeyedEntity.longAttr = newValue;
}
catch (swbuiltin::ExceptionObjectNotUnique)
{
 keyedEntity.longAttr = saveLongAttr;
}

Multipart keys should be modified as a group within the try block.

Example
entity Employee
{
 attribute string firstName;
 attribute string lastName;
 attribute long SSN;
 attribute long employeeNumber;
 key primary {employeeNumber};
 key secondary {SSN};
};

See also

attribute

action language select, for..in

272

Chapter 8: IDLos Reference
local entity

local entity
An entity that cannot be distributed. A local entity is essentially a C++
class defined in IDLos and implemented in action language. Its
operations are invoked directly without being dispatched through the
ObjectSwitch event bus, so they execute somewhat faster.

Though their operations are executed in a transaction, local entities are
not recoverable. This means that the invocation of operations in a local
entity is not logged in the transaction log, and changes to the local
entity are not logged in the transaction log, but everything that the local
entity does to other entities is logged.

You specify a local entity by placing the local property before the
entity declaration.

Syntax

[local] entity simple_declarator {: scoped_name}
{(entityContent)*};

entity simple_declarator;

The first syntax is for entity definition, the second for forward
declaration.

Description

Local entities can contain actions, enums, exceptions, operations,
structs, and typedefs. To make a local entity accessible outside its
package, expose the entity with an interface. A local entity may:

• be exposed by more than one interface
• inherit from other local entities in the same package
• use the annotation property
• have operations that use the initialize, recovery, and terminate

properties

Local entities may not have relationships to other entities. Forward
declares allow you to use a local entity type before it is defined.

Chapter 8: IDLos Reference
local entity

273

Warnings

A local entity cannot be used as an actual parameter when calling an
operation on a non-local entity.

Local entities are not recoverable.

Local entities have no state, so they cannot contain statesets.

Example
// forward declare
entity StartUp;

[local]
entity StartUp
{
 [initialize]
 void initData ();
};

See also

entity

274

Chapter 8: IDLos Reference
module

module
Used to provide extra namespaces within a package as needed.

Syntax

module simple_declarator {(definition)+};

Descriptions

Modules define a namespace. Modules may be nested.

A module may contain entities, interfaces, enums, structs, exceptions,
typedefs, nested modules, relationships, actions, and exposes
statements. Modules are declared inside of packages.

A module statement may have the annotation property.

When a module name appears more than once in a model, information
is added to the module definition each subsequent time that its name
appears.

Warnings

None

Example
package Traffic
{
 module Pedestrians
 {
 entity Joggers {};
 };
 module Cars
 {
 entity Trucks {};
 };
 relationship
 {
 role Pedestrians::Joggers avoid 0..* Cars::Trucks;
 role Cars::Trucks stop 0..* Pedestrians::Joggers;
 };

};

Chapter 8: IDLos Reference
operation

275

operation
Declares an operation on an entity or an interface.

Syntax

{oneway}(param_type_spec | void) simple_declarator
 ({ param_dcl (, param_dcl)*})
 {raises (scoped_name (, scoped_name)*)};

param_dcl:
 (in | out | inout) param_type_spec simple_declarator

Description

Use oneway for asynchronous operations.

In an entity, an operation may have annotation, const, local, and
virtual properties.

In an interface, an operation may have annotation, const, and local
properties.

In a local entity, an operation may have annotation, const,
initialize, recovery, and terminate properties.

Operations are implemented in action statements.

Warnings

Operations have constraints on whether they can be oneway, twoway,
or have parameters when they:

• are used in triggers
• are used as engine events
• implement exposed signals

See the appropriate sections of the manual.

276

Chapter 8: IDLos Reference
operation

Example
 void updateMode (
 in ModeType modeType,
 in RoadDirection modeDir);
 void updateLightTimes (
 in long timeGNS,
 in long timeGEW,
 in long timeYNS,
 in long timeYEW);
 void updateSensor (
 in boolean newCar,
 in SideDirection carDir);
 LightColor getLightN ();
 LightColor getLightS ();
 LightColor getLightE ();
 LightColor getLightW ();
 void getAllLights (
 out LightColor north,
 out LightColor south,
 out LightColor west,
 out LightColor east);

See also

action, signal, trigger

Chapter 8: IDLos Reference
package

277

package
Packages define components.

Syntax

package simple_declarator { (definition) * };

Description

IDLos applications require packages. Packages define components.
They form an access boundary: you cannot access an entity in another
package unless it is exposed by an interface.

A package may contain entities, interfaces, enums, structs, exceptions,
typedefs, modules, relationships, actions, and exposes statements.

A package statement may have the annotation property.

When a package name appears more than once in a model, information
is added to the package definition each subsequent time that its name
appears.

An IDLos file may contain more than one package, and a package may
be contained in more than one file.

Warnings

There is no implicit package scope for a file. All IDLos statements
except action definitions must be encapsulated in an explicit package.

278

Chapter 8: IDLos Reference
package

Example

This fragment of the sample model has been edited for clarity’s sake.

package Traffic
{
 enum LightColor
 {
 tyRed,
 tyYellow,
 tyGreen,
 tyBlkRed,
 tyBlkYellow
 };
 interface GUIProxy
 {
 // operations
 LightColor GetLightN ();
 LightColor GetLightS ();
 LightColor GetLightE ();
 LightColor GetLightW ();
 };

};

Chapter 8: IDLos Reference
relationship / role

279

relationship / role
Defines a relationship between entities or between interfaces.

Syntax

relationship simple_declarator
{
 role scoped_name identifier(0..1 | 0..* | 1..1 |
 1..*) scoped_name;
 {role scoped_name identifier(0..1 | 0..* | 1..1 |
 1..*) scoped_name;}
 {using scoped_name;}
};

Description

You specify roles in one or both directions between entities in the
relationship statement. Each role has a name, a multiplicity, and
specifies the two related entities. You can also specify an associative
entity with the optional using clause.

You can specify a relationship between interfaces instead of between
entities. This is how you expose a relationship. Do not mix entities and
interfaces in a relationship. Interfaces may not be used as associative
objects; relationships between interfaces may not contain a using
clause.

A relationship statement may have the annotation property.

Warnings

The two roles in a relationship must have different names.

Example
relationship flowOwnership
{
 role intersection has 1..1 trafficFlow;
 role trafficFlow isin 1..1 intersection;

};

280

Chapter 8: IDLos Reference
relationship / role

See also

action language, relate, trigger, unrelate

Chapter 8: IDLos Reference
signal

281

signal
Defines an event for a state machine.

Syntax

signal simple_declarator (param_dcl (, param_dcl)*);

param_dcl:
in param_type_spec simple_declarator

Description

A signal statement may have the annotation property.

Warnings

Signals may have only in parameters.

Example
signal blinkRed();
signal goRed();
signal blinkYellow();
signal greenTimed();
signal greenSensor();
signal greenHold();
signal timeout();
signal carArrived();
signal goYellow();

See also

stateset, transition, operation

282

Chapter 8: IDLos Reference
stateset

stateset
Defines the allowed states for an entity.

Syntax

stateset
{simple_declarator (, simple_declarator)*} = simple_declarator;

Where the last simple_declarator designates the initial state.

Description

Defines the states in an entity’s state machine, and its initial state.
When the entity is created, it is placed into its initial state.

Each state (including initial and final states) must be associated with an
action. In ObjectSwitch, the action of an initial state is not executed
upon object creation. You must always transition into a state with a
signal in order for an action to be executed.

A stateset statement may have annotation and finished properties.

Warnings

State names are in the entity’s namespace.

Example
stateset
{
 Initial,
 BlinkRed,
 Red,
 TimedGreen,
 TimedYellow,
 SensorGreenPreferred,
 WaitForCar,
 WaitForGreenTimeout
} = Initial;

See also

action, signal, transition

Chapter 8: IDLos Reference
struct

283

struct
A type to hold data.

Syntax

struct identifier { (type_spec declarator;)*};

Description

Use structs as a container for data.

Warnings

None

Example
struct Result
{
 typedef sequence<string> Messages;
 Messages messages;
 boolean status;
};

284

Chapter 8: IDLos Reference
transition

transition
Defines the transition from one state to another when a specific signal
is received.

Syntax

transition scoped_name to (scoped_name | cannothappen | ignore)
upon simple_declarator;

Description

Transition statements specify how a state machine should respond to a
certain signal when the entity is in a particular state. You can transition
to another state, ignore the signal, or cause an exception to be thrown
by specifying cannothappen. If a transition is not specified, the default
is cannothappen.

Warnings

There are no automatic transitions in IDLos. All transitions must be
explicit.

Example
transition Initial to BlinkRed upon blinkRed;
transition BlinkRed to Red upon goRed;
transition Red to BlinkRed upon blinkRed;
transition Red to BlinkYellow upon blinkYellow;
transition Red to TimedGreen upon greenTimed;
transition Red to SensorGreenPreferred upon greenSensor;
transition TimedYellow to Red upon timeout;
transition CarWaiting to ignore upon carArrived;
transition CarWaiting to ignore upon goYellow;
transition HoldGreen to ignore upon carArrived;
transition WaitForGreenTimeout to ignore upon carArrived;

See also

signals, stateset

Chapter 8: IDLos Reference
trigger

285

trigger
Triggers invoke operations upon the occurrence of some event.

Syntax

trigger simple_declarator
upon (create | delete | refresh | commit | abort);

trigger simple_declarator
upon (pre-get | post-get | pre-set | post-set) simple_declarator;

trigger scoped_name upon relate|unrelate simple_declarator;

Description

The first syntax is for entity triggers: The simple_declarator specifies an
operation name. You define entity triggers in entities.

The second syntax is for attribute triggers. The first simple_declarator
specifies an operation or signal. The next simple_declarator specifies
the attribute upon which to trigger. These are also defined in entities.

The third syntax is for role triggers. The scoped_name identifies an
operation or signal in the from entity of the role (the first one
mentioned in the role statement). The simple_declarator specifies the
role name. Role triggers are defined within relationship statements.

A trigger statement may have the annotation property.

Create and delete triggers with inheritance If you define create
triggers for both the supertype (parent) and subtype (child), then the
supertype trigger fires before the one in the subtype. Conversely,
subtype delete triggers fire before those in a supertype. Some readers
will find this familiar, as it resembles class constructor/destructor
behavior in other languages.

Warnings

Operations used in triggers must return void and must have no
parameters, and delete triggers may not be one-way operations. The
operations must be defined in the entity for which the triggers are
defined or in a supertype.

286

Chapter 8: IDLos Reference
trigger

Example
trigger initializeAttributes upon create;
trigger calculatePayment upon pre-get mortgagePayment;
trigger deleteCustomer upon unrelate patronizes;

See also

attribute, operation, signal, entity, relationship

Chapter 8: IDLos Reference
typedef

287

typedef
Give a new name to a type. Define a new sequence or array type.

Syntax

typedef type_spec declarator;

Description

The declarator is the name of the new legal type. A declarator can
include array dimensions.

The type_spec can be any legal type already defined, either a basic type,
or a user-defined type. It could also be a sequence or a bounded
string.

Warnings

None

Example
typedef octet byte;
typedef sequence<Employee> Division;

typedef boolean low_pass_filter[3][3];

288

Chapter 8: IDLos Reference
typedef

Chapter :
Complete IDLos grammar

289

Complete IDLos grammar
accessValues :

granted | revoked

actionStatement :
action scoped_name swalBlock ;

annotation :
annotation = string_literal (string_literal)*

annotations :
[annotation]

any_type :
any

array_declarator :
identifier (fixed_array_size)+

assignedProperty :
annotation | finished = finishedStateList | createaccess = accessValues |
deleteaccess = accessValues | extentaccess = accessValues

assocSpec :
using scoped_name

attr_dcl :
{ readonly } attribute param_type_spec simple_declarator { = string_literal }
(, simple_declarator { = string_literal })*

attributeList :
{ simple_declarator (, simple_declarator)* }

attributeTrigger :
(pre-set | post-set | pre-get | post-get) simple_declarator

base_type_spec :
floating_pt_type | integer_type | char_type | wide_char_type | boolean_type | octet_type
| any_type | object_type

boolean_literal :
TRUE|true | FALSE|false

boolean_type :
boolean

booleanProperty :
abstract | const | initialize | local | extentless | recovery |
singleton | terminate | virtual

case_clause :
(case_label)+ element_spec ;

290

Chapter :
Complete IDLos grammar

case_label :
case literal : | default :

char_type :
char

character_literal :
character-literal

complex_declarator :
array_declarator

const_dcl :
const const_type simple_declarator = const_exp

const_exp :
literal

const_type :
integer_type | char_type | wide_char_type | boolean_type | floating_pt_type | string_type
| wide_string_type | fixed_pt_const_type | scoped_name

constr_type_spec :
struct_type | union_type | enum_type

context_expr :
context (string_literal (, string_literal)*)

declarator :
simple_declarator | complex_declarator

declarators :
declarator (, declarator)*

definition :
type_dcl ; | const_dcl ; | except_dcl ; | interface ; | module ; | entity ; | exposeState-
ment ; | relationshipStatement ; | actionStatement | includeStatement | pragmaState-
ment

element_spec :
type_spec declarator

entity :
entity (entityStatement | forward_entity_dcl)

entityBlock :
{ ({ properties } entityContent)* }

entityContent :
signal_dcl ; | outerStateSetStatement ; | transitionStatement ; | entityTriggerStatement
; | keyStatement ; | type_dcl ; | const_dcl ; | except_dcl ; | attr_dcl ; | op_dcl ; |
actionStatement

Chapter :
Complete IDLos grammar

291

entityStatement :
simple_declarator { inheritance_spec } entityBlock

entityTrigger :
(create | delete | refresh | commit | abort)

entityTriggerStatement :
trigger simple_declarator upon (attributeTrigger | entityTrigger)

enum_type :
enum simple_declarator { enumerator (, enumerator)* }

enumerator :
simple_declarator

except_dcl :
exception identifier { (except_member)* }

except_member :
type_spec declarators ;

export :
type_dcl ; | const_dcl ; | except_dcl ; | attr_dcl ; | op_dcl ;

exposeStatement :
expose (entity scoped_name with interface scoped_name)

finishedStateList :
{ stateName (, stateName)* }

fixed_array_size :
[positive_int_const]

fixed_pt_const_type :
fixed

fixed_pt_literal :

fixed_pt_type :
fixed < positive_int_const , integer_literal >

floating_point_literal :
floating-point-literal

floating_pt_type :
float | double | long double

forward_dcl :
simple_declarator

forward_entity_dcl :
simple_declarator

292

Chapter :
Complete IDLos grammar

includeStatement :
< filename

inheritance_spec :
: scoped_name (, scoped_name)*

initState :
stateName

integer_literal :
decimal-integer-literal | hexadecimal-integer-literal | octal-integer-literal

integer_type :
signed_int | unsigned_int

interface :
interface (interface_dcl | forward_dcl)

interface_body :
({ properties } export)*

interface_dcl :
simple_declarator { inheritance_spec } { interface_body }

keyStatement :
key simple_declarator attributeList

literal :
integer_literal | fixed_pt_literal | floating_point_literal | boolean_literal | string_literal
| character_literal

member :
type_spec declarators ;

member_list :
(member)+

module :
module simple_declarator { ({ properties } definition)+ }

object_type :
Object

octet_type :
octet

op_attribute :
oneway

op_dcl :
{ op_attribute } op_type_spec simple_declarator parameter_dcls { raises_expr }
{ context_expr }

Chapter :
Complete IDLos grammar

293

op_type_spec :
param_type_spec | void

outerStateSetStatement :
stateSetSpec = initState

packageBlock :
{ ({ properties } definition)* }

packageScope :
simple_declarator ::

packageStatement :
package simple_declarator packageBlock ;

param_attribute :
in | out | inout

param_dcl :
param_attribute param_type_spec simple_declarator

param_type_spec :
base_type_spec | string_type | wide_string_type | fixed_pt_type | scoped_name

parameter_dcls :
({ param_dcl (, param_dcl)* })

positive_int_const :
integer_literal

pragmaStatement :
include filename

properties :
[property (, property)*]

property :
assignedProperty | booleanProperty

qualifiedName :
simple_declarator (. simple_declarator)*

raises_expr :
raises (scoped_name (, scoped_name)*)

relationshipStatement :
relationship simple_declarator { roleStatement ; (roleTriggerStatement ;)* {
roleStatement ; (roleTriggerStatement ;)* { assocSpec ; (roleTriggerStatement ;)*
} } }

roleMult :
1..1 | 0..1 | 1..* | 0..*

294

Chapter :
Complete IDLos grammar

roleStatement :
{ annotations } role scoped_name simple_declarator roleMult scoped_name

roleTriggerStatement :
trigger scoped_name upon (relate | unrelate) simple_declarator

scoped_name :
{ :: } qualifiedName (:: qualifiedName)*

sequence_type :
sequence < simple_type_spec { , positive_int_const } >

signal_dcl :
signal simple_declarator parameter_dcls

signed_int :
signed_long_int | signed_short_int | signed_longlong_int

signed_long_int :
long

signed_longlong_int :
long long

signed_short_int :
short

simple_declarator :
identifier

simple_type_spec :
base_type_spec | template_type_spec | scoped_name

socleContent :
packageStatement | actionStatement | includeStatement | pragmaStatement

socleStatement :
({ properties } socleContent)+

stateName :
simple_declarator

stateSetSpec :
stateset { stateName (, stateName)* }

string_literal :
string-literal

string_type :
string { < positive_int_const > }

struct_type :
struct simple_declarator { member_list }

Chapter :
Complete IDLos grammar

295

swalBlock :
{ delimited-action-language }

switch_body :
(case_clause)+

switch_type_spec :
integer_type | char_type | boolean_type | enum_type | scoped_name

template_type_spec :
sequence_type | string_type | wide_string_type | fixed_pt_type

transitionStatement :
transition qualifiedName to transitionTarget upon simple_declarator

transitionTarget :
qualifiedName | cannothappen | ignore

type_dcl :
typedef type_declarator | struct_type | union_type | enum_type | native
simple_declarator

type_declarator :
type_spec declarators

type_spec :
simple_type_spec | constr_type_spec

union_type :
union identifier switch (switch_type_spec) { switch_body }

unsigned_int :
unsigned (unsigned_short_int | unsigned_long_int | unsigned_longlong_int)

unsigned_long_int :
long

unsigned_longlong_int :
long long

unsigned_short_int :
short

wide_char_type :
wchar

wide_character_literal :

wide_string_literal :

296

Chapter :
Complete IDLos grammar

wide_string_type :
wstring { < positive_int_const > }

The next chapter provides a complete reference to the ObjectSwitch action language.

297

9 Action language reference

This section provides a reference to the ObjectSwitch action language,
organized by keyword. Each statement or function in the action
language appears on its own page, with a top-level syntax definition, a
description of the statement or function, and an example. See
“Complete action language grammar” on page 349 for a complete
syntactic definition of the action language.

About the notation

The syntax description for each statement or function uses the
following conventions:

bold screen font indicates a literal item that appears exactly as shown

italics indicates a language element that is defined elsewhere

plain text indicates a feature of the notation, as follows:

(item) parentheses group items together
(item)* the item in parentheses appears zero or more times
(item)+ the item in parentheses appears one or more times
{ item } items in braces are optional
(item1 | item2) the vertical bar indicates either item1 or item2 appears

For example:

keyword { optionalKeyword }
{ optionalThing }(zeroOrMoreRepeatingThing)*
(oneAlternative | otherAlternative | thirdAlternative)

298

Chapter 9: Action language reference

Some common elements

The following paragraphs describe some common elements found in
the action language grammar. These are not statements or functions,
so they do not appear under their own headings later in this chapter.
Nor does the action language grammar (see “Complete action language
grammar” on page 349) explain their meaning.

handle A handle is a reference to an object. When initially declared, a
handle is empty and may be used only as the target of an assignment,
select, or create statement.

chainSpec A chainSpec represents a relationship traversal. When one
entity or interface has a relationship to another entity or interface, two
objects may be related using a relate statement. The relationship can
then be traversed from one object to the other; this involves a chain
spec of the form:

scopedType [roleName]

For example, the for..in statement:

for handle in setSpec { where whereSpec } statementBlock

accepts either a chainSpec or an entity name for setSpec. The chainSpec
might be used as in either of the following examples:

// verify this subscriber’s phone services
for s in thisSubscriber->Service[subscribesTo]
{

service.verify();
}

// reorder all the parts used in this assembly
for p in thisAssembly->Component[contains]->Part[includes]
{

part.reorder();
}

A chainSpec may also represent an associative relationship traversal.
An associative relationship is where one entity has a relationship with
another. This relationship can only be traversed using the third entity.
For example:

Chapter 9: Action language reference

299

select thisSeller from Seller where thisSeller.name = "fred";
for aBuyer in thisSeller->Sale[sell_to]->Buyer[sell_to]
{
 aBuyer.verifyCredit();
}

300

Chapter 9: Action language reference
break

break
Exit from a while or for loop.

Syntax

break;

Description

This loop control statement lets you exit immediately from a while,
for...in, or for loop. If while or for loops are nested, the break exits
from the containing loop only.

IDLos Constraints

None.

Warnings

None.

Example
declare long x;
for (x = 0; x < 10; x++)
{

//
// Check for termination condition. If
// found get out of loop immediately
//
if (someCondition)
{

break;
}

}

See Also

continue, for, for ... in, return, while

Chapter 9: Action language reference
cardinality

301

cardinality
Return the number of objects in an extent or relationship.

Syntax
cardinality ((className | (handle | self) -> chainSpec));

Description

cardinality returns the number of objects in an extent or relationship.
Cardinality can be used on extents and a single relationship chain.
Extended relationship chains are not allowed.

cardinality should be used instead of iterating over an extent or
relationship to determine the number of objects. This has a large
performance advantage over iteration since extents and relationships
maintain the number of objects directly, eliminating the requirement to
iterate over the entire extent or relationship.

IDLos Constraints

None

Warnings

When you use cardinality on extentless entities, the result is
approximate.

Example
entity E { };
entity I { };

relationship EToI
{

role E toI 1..1 I;
role I toE 1..* E;

};

// --- Get the number of instances of E (the extent) ---
declare long numE = cardinality (E);

// --- Get the number of instances of E related to I ---

302

Chapter 9: Action language reference
cardinality

declare long numIToE = 0;
declare I anI;

// Iterate over the extent adding up the number of
// related instances of E
for anI in I
{

numIToE = numIToE + cardinality (anI->E[toE]);
}

See Also
for ... in
in

Chapter 9: Action language reference
continue

303

continue
Skip immediately to the next iteration of a for, for...in, or while
statement.

Syntax

continue;

Description

This loop control statement skips immediately to the next iteration of a
for, for...in, or while statement.

IDLos Constraints

None.

Warnings

None.

Example
declare Customers aCustomer;
for aCustomer in Customers
{

// Check to see if we have already processed
// this customer. If we have, skip this customer
// and proceed to the next

if (aCustomer.seen)
{

continue;
}

// First time we have seen this customer. Welcome
// them.

}

See Also

break, for, for ... in, return, while

304

Chapter 9: Action language reference
create

create
Create an object at a specific location with initial values.

Syntax

create handle
{ on locationSpec }
{ values (valueSpec (, valueSpec)*) } ;

Description

This statement creates an object using a previously declared handle of
entity or interface type. A handle is set to empty upon declaration, and
is invalid (that is, it does not refer to any object) until it is assigned to a
valid object or used in a create statement.

locationSpec is the name of the ObjectSwitch node where the object
will be created. If the on clause is omitted, the object is created on the
local node.

valueSpec is an initial value assignment for the attributes or
relationships, in the form attributename:value (for relationships,
chainSpec:value) If attributes are not assigned initial values, the value of
the attribute is undefined. The only exception to this is object
references. Object references are initialized to a value of empty.

IDLos Constraints

The entity being created cannot have been declared as a singleton.

Warnings

It is an error to use create on entities that have been declared as
singleton in your model. You must use create singleton instead.

Attributes that are part of a key must be initialized to a unique key value
to avoid duplicate key exceptions during object creation.

Relationships that are used for referential integrity in a backing
database should be initialized during creation to ensure that referential
integrity is maintained.

Chapter 9: Action language reference
create

305

A race condition during object creation allows two extentless objects to be
created with the same object ID. Always enclose extentless creates in a
try..catch block to catch the ExceptionObjectNotUnique exception.

Examples
entity Customer
{

attribute string name;
attribute long id;
key CustId { id };

};

declare Customer lclCustomer;
declare Customer rmtCustomer;
declare long uniqueKey;

//
// allocateCustId allocates a unique customer id
//
uniqueKey = self.allocateCustId();

//
// Create a customer on the local node
//
create lclCustomer values (name:”Joe”, id:uniqueKey);

//
// Allocate another customer id
//
uniqueKey = self.allocateCustId();

//
// Create a customer in Paris
//
create rmtCustomer on “Paris” values (name:”Jean-Louis”,

id:uniqueKey);

See Also

create singleton, delete

306

Chapter 9: Action language reference
create singleton

create singleton
Create a singleton object at a specific location with initial values.

Syntax
create singleton handle

{ on locationSpec }
{ values (valueSpec (, valueSpec)*) };

Description

This statement creates a singleton object using a previously declared
handle of entity or interface type. There is only one instance of a
singleton entity.

create singleton can be called multiple times. If the single instance
has not been created it is created and returned to the caller. If the
instance already exists, a handle to the single instance is returned to
the caller.

IDLos Constraints

Entity must be declared as a singleton.

Warnings

It is an error to use create singleton on entities and interfaces that
have not been declared as a singleton in IDLos.

Example
[singleton]
entity PortAllocator
{

void doInitialization();
};

//
// Create a singleton
//
declare PortAllocator myAllocator;

create singleton myAllocator;

Chapter 9: Action language reference
create singleton

307

//
// Invoke a two-way operation to ensure that
// it is initialized before using it
//
myAllocator.doInitialization();

See Also

create, delete

308

Chapter 9: Action language reference
declare

declare
Declare a variable.

Syntax
declare type identifier { [integerLiteral] | assignmentExpression };

declare { (type identifier { [integerLiteral] | assignmentExpression };)+ }

declare const type identifier { [integerLiteral] | assignmentExpression };

Description

All variables must be declared before they are used. The ObjectSwitch
action language is strongly typed. Variables are scoped to an operation,
state, or code block defined within an operation or state.

The value of a variable is undefined until it is assigned a value. The
only exception is object handle which are initialized to empty when
they are declared. Variables can be assigned initial values in the
declare statement.

Variables can be declared as arrays. There is no support for initializing
the values of an array in the declare statement.

Strings can also be declared as either bounded or unbounded.

IDLos Constraints

None.

Warnings

A variable should always be initialized to a known value. The value of
an uninitialized variable is undefined and may change in the future.
The only exception is for object handles, which are empty after being
declared.

Example
//
// Declare some variables
//
declare long aLong = 0;

Chapter 9: Action language reference
declare

309

declare AnEntity anEntity;

//
// Declare an array of shorts
//
declare short anArrayOfShorts[100];

//
// Declare a variable inside of a for loop
//
declare long i;
for (i = 0; i < 10; i++)
{

declare long tmpVar;
}
// tmpVar is out of scope here

//
// Bounded strings
//
declare string<10> firstName;

//
// Unbounded string
//
declare string unboundedString;

See Also
Types

310

Chapter 9: Action language reference
delete

delete
Destroy an object.

Syntax
delete handle;

Description

Destroy an object. All memory associated with the object is discarded.
After invoking delete on an object handle, using that handle will
produce a runtime error.

An implicit unrelate is performed on all relationships in which this
object participates.

IDLos Constraints

None.

Warnings

None.

Example
declare Customer aCustomer;
create aCustomer;

// Do something with customer

// Destroy the customer
delete aCustomer;

// aCustomer handle is now invalid

See Also
create
create singleton

Chapter 9: Action language reference
empty

311

empty
Test and set handles to empty.

Syntax
declare type_identifier handle = empty;

empty handle

handle = empty;

Description

empty returns a boolean value if used in an expression. true is
returned if the handle is currently unassigned to a valid object
reference. false is returned if the handle holds a valid object
reference.

empty can also be used to initialize a handle to known value that
indicates that the handle does not contain a valid object reference.

IDLos Constraints

None

Warnings

None

Example
entity Customer { };

...

declare Customer aCustomer = empty;

//
// If the customer handle is empty create a new customer
//
if (empty aCustomer)
{

create aCustomer;
}

312

Chapter 9: Action language reference
empty

//
// Set the customer handle to empty
//
aCustomer = empty;

See Also

Chapter 9: Action language reference
Exceptions

313

Exceptions
Exception handling.

Syntax

try statementBlock (catchStatement)+

catch(scopedType) statementBlock

throw handle;

Description

These statements provide support for handling user and system
exceptions.

User exceptions are defined in IDLos using the IDL exception and
raises keywords. System exceptions are a predefined set of
exceptions that can be raised by the ObjectSwitch runtime and
adapters. System exceptions cannot be thrown by the user, but they
can be caught.

The supported system exceptions are defined in the swbuiltin
component. You must import this component to catch system
exceptions in action language. For details on the individual system
exceptions, refer to the on-line documentation for the swbuiltin component.

IDLos Constraints

User exceptions are defined using IDLos. Operations that throw an
exception must have a raises clause in the operation signature.

Warnings

Uncaught user and system exceptions will cause a runtime engine
failure.

System exceptions should not be thrown by users.

Handling the system exceptions ExceptionDeadLock and
ExceptionObjectDestroyed in application code not executed as part of
spawn will produce unpredictable but bad results.

../../../userdoc/generic/components/swbuiltin/index.html

314

Chapter 9: Action language reference
Exceptions

Example
package Life
{

entity A
{

exception IsDead
{

string causeOfDeath;
};
exception IsTired
{

long nextTime;
};

void wakeUp(in string reason) raises (IsDead, IsTired);
void checkIt(void);

};
};

//
// wakeUp operation. Throws exception on how
// the wakeup was processed
//
action Life::A::wakeUp
{`

//
// Figure out my current state
//
if (imDead)
{

declare IsDead id;
id.causeOfDeath = "boredom";
throw id;

}
if (imTired)
{

declare IsTired it;
it.nextTime = 60;
throw it;

}
`};

//
// checkIt handles exceptions thrown by wakeUp
//
action Life::A::checkIt
{`

Chapter 9: Action language reference
Exceptions

315

try
{

self.wakeUp("it's noon!");
}
catch (IsDead id)
{

declare string cd = id.causeOfDeath;
printf("id.causeOfDeath = %s\n", cd.getCString());

}
catch (IsTired it)
{

printf("it.nextTime = %s\n", it.nextTime);
}

`};

//
// Example of string overflow exception
//
entity StringOverflow
{

attribute string<5> stringFive;
};

//
// Assign a string larger than 5 characters to
// stringFive. This will cause an exception
//
try
{

self.stringFive =”123456”;
}
catch (ExceptionStringOverflow)
{

printf(“caught ExceptionStringOverflow\n”);
}

//
// Example invalid array exception
//
typedef long ArrayFive[5];

//
// Use an index > 4. This will cause an exception.
// Remember that arrays are zero based.
//
declare ArrayFive arrayFive;
try
{

arrayFive[5] = 1;

316

Chapter 9: Action language reference
Exceptions

}
catch (ExceptionArrayBounds)
{

printf(“caught ExceptionArrayBounds\n”);
}

See Also

spawn, Transactions

Chapter 9: Action language reference
extern

317

extern
Specifies an external symbol.

Syntax

extern (scopedType | cType) quotedIdentifier

Specifies an external symbol that will be referenced in your action
language. The model compiler will resolve this symbol at build time.
This removes the need to create an SDL wrapper for simple symbols
that your model references.

IDLos Constraints

None.

Warnings

None.

Example
extern int myGlobalVar;
myGlobalVar = 123;

318

Chapter 9: Action language reference
for

for
Iterate over statements with iterator expression and termination
condition.

Syntax

for (lval { assignmentExpr } ; conditionExpr ; iteratorExpr) statementBlock

Description

An iteration statement; enables you to loop through and execute a
block of code until a condition becomes false.

assignmentExpr is performed once before iteration begins. It is typically
used to set the initial value of a variable used in the next two
expressions.

conditionExpr is evaluated before each iteration. If the expression is
nonzero, then statementBlock is executed.

iteratorExpr is performed each iteration after statementBlock is
executed.

IDLos Constraints

None.

Warnings

None.

Example
for (x = 0; x < maxTimes; x++)
{

//
// Repeat this work maxTimes
//

}

See Also
for in

Chapter 9: Action language reference
for

319

while

320

Chapter 9: Action language reference
for ... in

for ... in
Iterate over an extent or relationship.

Syntax
for handle in setSpec { where whereSpec } statementBlock

Description

Iterates over a set of objects. If the set is empty, the statement block is
never executed. The handle must be of the same type as the set it
iterates over.

IDLos Constraints

None.

Warnings

Do not confuse this statement with the in function.

Example

Consider the following IDLos definitions:

entity Customer { attribute string firstName; };
entity Queues { };

relationship CustomerQueues
{

role Queue holds 0..* Customer;
role Customer waitsIn 1..1 Queue;

};

Queues and Customers that have been created and related can be
iterated across using the for...in statement in various ways:

//
// --- welcome all the customers held in some queue q ---
//
for cust in q->Customer[holds]
{

// Welcome this customer
}

Chapter 9: Action language reference
for ... in

321

//
// --- Send a bill to every customer that exists ---
//
for cust in Customer
{

// Send a bill to this customer
}

//
// --- Welcome customers called Dan in some queue q ---
//
for cust in q->Customer[holds] where (cust.firstName == “Dan”)
{

// Welcome this Dan
}

See Also
cardinality
select
in

322

Chapter 9: Action language reference
if else else if

if
else
else if

Conditionally execute a statement block.

Syntax
if booleanExpression statementBlock
 { (else statementBlock | elseIfStatement) }

elseIfStatement :
 else if booleanExpression statementBlock
 { (else statementBlock | elseIfStatement) }

Description

A conditional control flow operator. The else clause is optional. If
statements may be nested.

IDLos Constraints

None.

Warnings

None.

Example
if (aCustomer.balanceDue < aCustomer.creditLimit)
{

//
// Allow withdrawal
//

}
else if (aCustomer.isPaymentOverdue)
{

//
// Refuse order with rude message
//

}
else

Chapter 9: Action language reference
if else else if

323

{
//
// Credit limit is expired, but payments
// current. Politely refuse withdrawal
//

}

See Also
for
while

324

Chapter 9: Action language reference
in

in
Test whether a given object reference refers to a member of some set
of objects.

Syntax

handle in handleOrSelf -> chainSpec

Description

Returns true if the object referenced by the handle is a member of the
set specified. Otherwise it returns false.

IDLos Constraints

None.

Warnings

Do not confuse this function with the for..in statement.

Example
//
// If is one of my cars, drive it
//
if(thisCar in self->Car[owns])
{

thisCar.drive();
}

See Also
cardinality
for ... in

Chapter 9: Action language reference
isnull

325

isnull
Test and set an attribute’s null indicator.

Syntax

isnull attributeName
attributeName = isnull;

Description

isnull returns a boolean value if used in an expression. true is
returned if the object is created without an assigned initial value. false
is returned if the object is created with an explicit value.

isnull can also be used to set the null indicator of an attribute.

IDLos Constraints

None.

Warnings

If isnull is used to set the null indicator of an attribute the data for the
attribute does not change though subsequent tests for isnull will be
true.

Example
entity Invoice
{
 ...
 attribute long total;
}
declare Invoice anInvoice;
create anInvoice;
...
if (isnull anInvoice.total)
{
 // the attribute total is null.
}

326

Chapter 9: Action language reference
relate

relate
Relates one object to another across a relationship.

Syntax
relate (handle | self) relationshipSpec (handle | self)
{ using (handle | self) } ;

Description

Establishes a relationship between two objects, or an associative
relationship between three objects if a using clause is provided.

Relationships can be used as ordered lists by definining a 1..1
relationship from an entity to itself. The order of the handles in the
relate statement defines the order of the objects in the relationship.

The order of the two handles is significant only if they refer to the same
entity.

If the cardinality of any side of a role is 1, performing a relate on that
role will cause an implicit unrelate to occur for any objects previously in
that relationship.

IDLos Constraints

None.

Warnings

None.

Example
entity Customer { };
entity Queues { };

relationship CustomerQueues
{

role Queue holds 0..* Customer;
role Customer waitsIn 1..1 Queue;

};

Chapter 9: Action language reference
relate

327

relationship CustomerOrder
{

role Customer inFrontOf 1..1 Customer;
role Customer inBackOf 1..1 Customer;

};

//
// Put a customer in a queue
//
relate aCustomer waitsIn aQueue;

//
// This is also valid for putting a customer
// in a queue
//
relate aQueue holds aCustomer;

//
// Put impatient customer in front of nice customer
//
relate impatientCustomer inFrontOf niceCustomer;

See Also

unrelate

328

Chapter 9: Action language reference
return

return
Return from an operation or state.

Syntax

return { expression } ;

Description

A return statement signals completion of an operation or a state and
returns control to the caller. Operations with return values must have a
return statement and provide a return value expression.

There may be any number of return statements in an operation or
state.

IDLos Constraints

Operations must be declared with the correct return type.

Warnings

It is illegal to return a value from a state.

Example
entity ATM
{

long getCash();
void pressOk();

};

//
// Implementation of getCash operation
//
action getCash
{‘

declare long cashAmount = 12345;
return cashAmount;

‘};

//
// Implementation of pressOk operation
//

Chapter 9: Action language reference
return

329

action pressOk
{‘

return;
‘};

See Also

330

Chapter 9: Action language reference
select

select
Select an object using a relationship or an extent.

Syntax

select handle from (handle | self) ((->) chainSpec)+ { where whereSpec };

select handle from className where whereSpec;

select handle from singleton className;

Description

select always returns a single object. It can be used against an extent
or a many relationship only with a where clause to narrow the select to
return a single object.

The three forms of select above are:

• navigate a relationship chain with a where clause. The where clause
is not required if this navigation is towards the one side of a relation-
ship role.

• select a single object from an extent using a where clause.
• select a singleton.

IDLos Constraints

None.

Warnings

It is a runtime error if a select statement returns more than a single
object.

Example
[singleton] entity TheBoss { };
entity Customer
{

attribute long custId;
key CustomerId { custId };

};
entity Contact { };

Chapter 9: Action language reference
select

331

relationship CustomerContacts
{

role Contact isFrom 1..1 Customer;
role Customer has 0..* Contact;

};

///// ---- above was IDLos, below is action language ---- /////

//
// Select the next customer in line
//
select aCustomer from aContact->Customer[isFrom];

//
// Select customer 123 from all customers
//
select aCustomer from Customer where (aCustomer.custId == 123);

//
// Find the boss
//
select boss from singleton TheBoss;

See Also
for...in

332

Chapter 9: Action language reference
select...using

select...using

Syntax
select handle from className using keyName where whereSpec
{ readlock | writelock | nolock }
{ on empty create { values valuesSpec } }

Description

select...using looks up an entity using the specified key. By default, if
the object is found, it is locked for reading. If you specify nolock, the
object will not be locked. Specifying writelock locks the object for
writing.

If you specify on empty create and the object is not found,
select...using creates a new object with the key values you supplied
in the where clause. You can set other attribute valuesusing the optional
values clause.

Warnings

If no object is found, and on empty create was not specified, it is
possible that an entity matching the specification may be created in
another transaction. This could cause a subsequent create of the object
to throw ExceptionObjectNotUnique.

Examples

The following examples are based on this IDLos entity definition:

entity Obj
{
 attribute long x;
 attribute long y;

 key key1 { x };
};

To select the instance of entity Obj where x is zero:

declare Obj obj;
select obj from Obj using key1 where (obj.x == 0);

Chapter 9: Action language reference
select...using

333

If no instance exists where x is zero, the handle "obj" will be empty. To
create an object with the given key if it is not found, use on empty
create:

select obj from Obj using key1 where (obj.x == 0)
on empty create;

This instantiates an object with the attribute x initialized to zero. The
attribute y will be unset. To initialize additional attributes when the
entity is created, a values clause may be used:

select obj from Obj using key1 where (obj.x == 0)
on empty create values (y:46);

Note that the key attributes’ values are taken from the where clause,
and may not be specified again in the values clause.

Locking examples

By default, when an entity is found, it is locked for reading. This
ensures that the entity will not be modified by another transaction after
it is selected. If the entity is to be modified, a write lock may be taken
via the writelock option:

select obj from Obj using key1 where (obj.x == 0)
writelock;

This prevents a lock promotion, which can increase the likelihood of a
deadlock.

The nolock option may be used to specify that the object should not be
locked. This is especially useful when sending oneway events to objects
which may be locked by another transaction:

select obj from Obj using key1 where (obj.x == 0)
nolock;

Using the nolock option means that another transaction can modify the
object you have just selected, while you are handling it.

334

Chapter 9: Action language reference
self

self
Reference the current object.

Syntax
self

Description

The self keyword is used to reference the current object in which an
operation or state is executing.

In spawned operations, self refers to the thread of execution, not to an
actual object. See “spawn” on page 335 and “Terminating spawned
threads” on page 227 for more information.

IDLos Constraints

None.

Warnings

Assigning empty or any handle to self is illegal.

Example
entity Customer
{

attribute long customerId;
void anOperation();

};

action anOperation
{‘

declare long x;
x = self.customerId; // Access customerId in the current object

‘};

See Also
empty

Chapter 9: Action language reference
spawn

335

spawn
Spawn a user thread of control.

Syntax

spawn scopedType ({ paramSpec (, paramSpec)* });

Description

Spawn is used to create a thread of control that is managed by the user.
This provides a mechanism for users to call blocking external functions
and manage transactions as work is injected into ObjectSwitch.

For example, spawn can be used to create a listener thread for a
protocol stack. As messages are received on the protocol stack a
transaction is started using the transaction support in action language
and the work is injected into ObjectSwitch.

The spawn statement can only be used on operations in local entities.
Thus the spawned operation is not associated with any transaction or
shared memory.

Object references used as parameters to the spawn operation and ones
declared in the spawn operation are not in a transaction until a begin
transaction statement is executed. Access to these objects remains
valid until a commit or abort transaction statement is executed.
Accessing these objects outside of a transaction will cause a runtime
exception.

For example, the following action language will cause a runtime
exception:

ALocalEntity::aSpawnMethod(in long arg1)
{
 declare AnEntity anEntity;

 // Causes a runtime exception since no transaction
 // was started
 create anEntity;

 begin transaction;
 ...
}

336

Chapter 9: Action language reference
spawn

IDLos Constraints

You can only spawn an operation that:

• is defined in a local entity
• is a two-way void operation
• uses only in parameters

Warnings

Spawned operations must use begin transaction before accessing
any objects. Similarly, they must use commit transaction once they
have finished.

Spawned operations must explicitly manage all exception handling,
including transaction deadlocks. (A transaction deadlock can occur
when accessing an object reference, accessing an attribute, or invoking
a two-way operation.) The spawned operation must catch the
ExceptionDeadLock system exception and abort the current
transaction. Any uncaught system exceptions will cause a fatal engine
failure.

Spawned operations cannot use return while in an active transaction.
Doing so causes a fatal engine error.

When an engine is shut down, the thread manager kills spawned threads
that are not in an active transaction. During transactions in spawned
threads, you should periodically check whether the thread needs to
terminate. Refer to the online documentation for the swbuiltin component to
learn more about using the shouldTerminate() operation.

A spawned thread that blocks in an external function with a transaction
active can prevent clean shutdown. Do not block within transactions in
spawned threads.

Example

This is a simple example of how the spawn and transaction statements
can be used to implement a simple server.

package AServer
{

[local]

../../../userdoc/generic/components/swbuiltin/index.html

Chapter 9: Action language reference
spawn

337

entity Initialize
{

[initialize]
void startServer(void);

};

[local]
entity ServiceThread
{

void runServer(in long msgSize);
void doWork(inout RuntimeServer rs);

};

//
// The following entity method implementations are
// left as an exercise to the reader.
//
entity WorkerObject
{

oneway void doit(in string data);
...

}

[local]
entity RuntimeServer
{

exception NetworkFailure { };
void init(in long msgSize) raises (NetworkFailure);
void recv(out string data) raises (NetworkFailure);

};
};

//
// Implementation of startServer
//
action AServer::Initialize::startServer
{`

//
// Assumes a builtin interface to registry.
//
declare swbuiltin::Registry registry;
declare long msgSize;
msgSize = registry.getInt32("SocketServer", "msgSize", 0);
declare long numThreads;
numThreads = registry.getInt32("SocketServer","numThreads", 5);

//
// Spawn numThreads threads of control
//

338

Chapter 9: Action language reference
spawn

declare long i;
for (i = 0; i < numThreads; i++)
{

spawn ServiceThread::runServer(msgSize:msgSize);
}

`};
//
// Implementation of runServer
//
action AServer::ServiceThread::runServer

{`
//
// Call native method to do server initialization
//
declare RuntimeServer rs;
declare boolean runForever = true;
while (runForever)
{

declare boolean initComplete = false;
try
{

rs.init(msgSize:msgSize);
initComplete = true;

}
catch (RuntimeServer::NetworkFailure)
{

printf("Could not init server\n");

//
// Sleep and retry the server
// initialization.
//
swbuiltin::nanoSleep(60, 0);

//
// Or we could kill the engine here.
//
// swbuiltin::stop(1);
//

}

//
// Call dowork to process work until the
// connection is lost. This shows that we can
// call other IDLos local entity operations
// in a spawned thread of control.
//
if (initComplete == true)

Chapter 9: Action language reference
spawn

339

{
self.doWork(rs);

}
}

`};

action AServer::ServiceThread::doWork
{`

//
// Create a worker object. Probably actually want
// to create a pool of them, and manage a free list
// (via a relation) for injecting work.
//
declare WorkerObject wo;

//
// Need to manage lifecycle of this object.
//
begin transaction;
create wo;
commit transaction;

declare boolean ok = true;
while (ok)
{

try
{

declare string data;

//
// Assume this call reads in data
// from the network via the ::recv()
// socket call. Since it blocks, we don't
// want to be in a transaction.
//
rs.recv(data);

//
// Inject work into objectswitch (see
// note above about worker pool).
//
begin transaction;
wo.doit(data);
commit transaction;

}
catch (swbuiltin::ExceptionDeadLock)
{

//
// Here we throw away work and try

340

Chapter 9: Action language reference
spawn

// another recv(). Could be updated to
// continually try and post the last work
// item.
//
printf("got deadlock\n");

//
// Abort any pending work.
//
abort transaction;

}
catch (RuntimeServer::NetworkFailure)
{

//
// Example of catching a user defined
// exception. Note we don't call
// abort, since this was thrown from the
// recv call.
//
printf("Caught a network failure\n");
ok = false;

}
//
// Should catch and abort on all system
// exceptions
//

}

//
// returning here causes the network
// code to restart.
//
return;

`};

See Also

Exceptions, Transactions

Chapter 9: Action language reference
Transactions

341

Transactions
Explicitly manage ObjectSwitch transactions.

Syntax
(begin | commit | abort) transaction ;

Description

The three types of transaction statements let you explicitly manage
transactions. This is only required and only allowed in an operation that
was invoked using the spawn statement. All other operations and
states are implicitly in a transaction when they are executed.

Objects that are created or selected in a spawned operation must be
done in the context of a valid transaction that was started using begin
transaction.

Once an object has been created or selected in a valid transaction it is
implicitly reattached to any new transactions

See also “Transaction processing” on page 244 and related topics for a
discussion of how transactions, locks, and deadlocks are handled at run
time.

IDLos Constraints

None.

Warnings

Accessing objects passed as parameters are declared in a spawn
operation that are not in a valid transaction will cause a runtime
exception.

Example

This is a simple example of creating and selecting objects in a spawned
local operation. A more detailed example of using transaction control is
also provided under “spawn” on page 335.

ALocalEntity::aSpawnOperation(in long arg1)

342

Chapter 9: Action language reference
Transactions

{
declare MyObject mobj;
declare SelectObject sobj;

//
// Create and select in a valid transaction
//
begin transaction;
create mobj;
select sobj from singleton SelectObject;
commit transaction;

for (;;)
{

begin transaction;

//
// No need to select these objects again.
// They are implicitly reattached to the new
// transaction.
//
mobj.numThings++;
sobj.doIt(mobj.numThings);

commit transaction;
}

}

See Also
Exceptions
spawn

Chapter 9: Action language reference
Types

343

Types
Action language data types.

Syntax

See IDLos chapter.

Description

The action language uses the IDL type system, just like the rest of
IDLos does. The declare statement is used to define a type in an
operation or state.

Structure members are accessed using the “.” notation.

Arrays and sequences are both accessed using “[n]” indexing to access
a specific element in an array or sequence. Arrays and sequences use
zero based indexing.

Unbounded sequences are automatically grown at runtime as required.
If the index being accessed is larger than the current sequence size,
the sequence is resized. When a sequence is resized, the values of all
new sequence members is undefined. They must be initialized to a
known value by the application.

IDLos Constraints

None.

Warnings

None.

Example
struct AStruct
{

long aLongMember;
short aShortMember;

};

typedef sequence<char> UnboundedCharSequence;
typedef long ALongArray[10];

344

Chapter 9: Action language reference
Types

..... Above was IDLos, below is action language

// --- Accessing a structure member ---
declare AStruct aStruct;
declare long aLong;
aLong = aStruct.aLongMember;

// --- Accessing index 23 in unbounded sequence. ---
// --- NOTE - Sequences and arrays are zero based. ---
declare UnboundedCharSequence seq;
declare char aChar;
aChar = seq[22];

// --- Accessing the first index in an array ---
declare ALongArray array;
declare long aLong;
aLong = array[0];

// --- Using an any ---
declare any anAny;
declare long aLong;
declare string aString;

// --- Assign a long to an any ---
aLong = 1;
anAny <<= aLong;
// anAny now contains 1

// --- Now assign a string to the same any ---
aString = “hello world”;
anAny <<= aString;
// anAny now contains “hello world”

See Also
declare

Exceptions

Chapter 9: Action language reference
unrelate

345

unrelate
Unrelate objects.

Syntax
unrelate (handle | self) relationshipSpec (handle | self)
{ using (handle | self) } ;

Description

The unrelate statement terminates the relationship between the
specified objects. If the relationship is an associative relationship the
using clause must be specified to define the third-party in the
associative relationship. Deleting a related object performs an implicit
unrelate.

IDLos Constraints

None.

Warnings

None.

Example
entity Customer { };
entity Queues { };

relationship CustomerQueues
{

role Queue holds 0..* Customer;
role Customer waitsIn 1..1 Queue;

};

..... Above was IDLos, below is action language

// --- Remove a customer from a queue ---
unrelate aCustomer waitsIn aQueue;

// --- Remove a customer from a queue the other way works too ---
unrelate aQueue holds aCustomer;

346

Chapter 9: Action language reference
unrelate

See Also
delete
relate

Chapter 9: Action language reference
while

347

while
Loop over a statement block while a condition remains true.

Syntax

while booleanExpression statementBlock

Description

The while statement loops and executes a set of statements repeatedly
as long as a condition is true. You may use break to exit a while loop at
any time, or use continue to skip immediately to the next iteration.

IDLos Constraints

None.

Warnings

None.

Example
while (aClerk.atWork)
{

// --- Can this clerk help this customer? ---
if (!aCustomer.canHelp)
{

continue;
}

// --- Time to quit? Just leave ---
if (aClerk.doneForTheDay)
{

break;
}

//
// Service customers
//

}

348

Chapter 9: Action language reference
while

 See Also
break
continue
for

Chapter 9: Action language reference
Complete action language grammar

349

Complete action language grammar
This section contains the grammar that is used by the action language
parser. Grammatical elements in this list occasionally differ from their
equivalents in the SWAL statement and functions section, because in
that section a few changes were made for the sake of clarity:

• minor name changes added missing semantic information
• unimplemented parts of the grammar were omitted
• some elements were expanded or condensed according to the gram-

mar

The elements defined in the grammar are listed in alphabetical order. A
few elements—such as string-literal or identifier—are defined by the
IDL grammar. See the IDLos grammar in Chapter 2 for a definition of
these items.

action:
type scopedMethodName inputParameterList { const } statementBlock |
includeStatement | idStatement | package identifier ;

actionFile:
(action)+

addingExpression:
multiplyingExpression ((+ | -) multiplyingExpression)*

arrayExpression:
{ :: } (identifier ::)* identifier | integerLiteral

arrayList:
([expression])*

assignEqualOp:
*= | /= | %= | += | -= | <<= | >>= | &= | ^= | |=

assignmentExpression:
(= | assignEqualOp) (expression | empty) | (++ | --)

attributeName:
identifier

binaryOperator:
+ | - | * | /

booleanExpression:
(expression)

booleanLiteral:
true | false

350

Chapter 9: Action language reference
Complete action language grammar

booleanOperator:
&& | ||

cardinalityFunction:
cardinality ((scopedType | handleOrSelf -> chainSpec))

catchExpression:
scopedType { identifier }

catchStatement:
catch (catchExpression) statementBlock

chainSpec:
scopedType [relationshipSpec]

charLiteral:
character-literal

className:
scopedType

comparisonOperator:
< | > | <= | >= | == | !=

constDeclare:
{ const }

createStatement:
create { singleton } handle { on locationSpec }
{ implementation implementationSpec }
{ values (valueSpec (, valueSpec)*) }

cType:
unsigned short | short | unsigned int | int | long |
long long | unsigned (long | long long) | float | double | unsigned char |
char | void

declareSpecStatement:
type identifier { [arrayExpression] | assignmentExpression } ;

declareStatement:
declare declareSpecStatement | declare { (declareSpecStatement)+ }

deleteStatement:
delete handle | delete [] handle

elseIfStatement:
else if booleanExpression statementBlock { (elseStatement | elseIfStatement) }

elseStatement:
else statementBlock

expression:
relationalExpression (booleanOperator relationalExpression)*

Chapter 9: Action language reference
Complete action language grammar

351

extendedChain:
((->) chainSpec)+

floatLiteral:
floating-point-literal

forStatement:
for handle in setSpec { where whereSpec } { order by attributeName } statement-
Block | for (lval { assignmentExpression } ; expression ; expression) statement-
Block

function:
cardinalityFunction | inFunction

genAssignDeclareStatement:
{ const } (cType | scopedType | self) (paramList | userDereference identifier { ([
arrayExpression] | assignmentExpression | paramList) } | . identifier arrayList (
paramList | = (expression | empty) | assignEqualOp expression))

handle:
identifier

handleOrSelf:
handle | self

idStatement:
identifier (expression) ;

ifStatement:
if booleanExpression statementBlock { (elseStatement | elseIfStatement) }

implementationSpec:
identifier | integerLiteral

includeStatement:
include < identifier ((. | /) identifier)* >

inFunction:
handle in handleOrSelf -> chainSpec

inputParameter:
type & identifier

inputParameterList:
((inputParameter (, inputParameter)* | void |))

integerLiteral:
decimal-integer-literal | hexadecimal-integer-literal | octal-integer-literal |
decimal-integer-literal_LL | hexadecimal-integer-literal_LL | octal-integer-
literal_LL

literal:
stringLiteral | charLiteral | integerLiteral | floatLiteral | booleanLiteral

locationSpec:

352

Chapter 9: Action language reference
Complete action language grammar

identifier | stringLiteral

loopControlStatement:
break | continue

lval:
{ (++ | --) } identifier arrayList

lvalStatement:
lval { assignmentExpression }

methodName:
identifier

multiplyingExpression:
signExpression ((* | / | %) signExpression)*

nativeType:
unsigned short | short | unsigned (long | long long) | long | long long |
float | double | boolean | char | wchar | octet | Object | any | string | wstring
| void

operationName:
identifier

parameterName:
identifier

paramList:
({ paramSpec (, paramSpec)* })

paramSpec:
parameterName : expression | expression

primitiveExpression:
{ (& | *) } identifier arrayList { (++ | --) } | literal | function |
handleOrSelf . attributeName (. attributeName)* (paramList | arrayList) | user-
MethodOrVar | staticMethodOrEnum | (expression) |
sizeof ((identifier | cType)) | empty handleOrSelf |
new ({ :: } (identifier ::)* identifier | cType) { [arrayExpression] } | self

relateStatement:
relate handleOrSelf relationshipSpec handleOrSelf { using handleOrSelf }

relationalExpression:
addingExpression (comparisonOperator addingExpression)*

relationshipName:
identifier

relationshipSpec:
relationshipName

returnStatement:

Chapter 9: Action language reference
Complete action language grammar

353

return { expression }

scopedMethodName:
(identifier ::)+ identifier

scopedType:
{ :: } (identifier ::)* identifier

selectStatement:
select { distinct } handle from (handleOrSelf extendedChain { where where-
Spec } | singleton className | className where whereSpec)

setSpec:
className | handleOrSelf extendedChain

signExpression:
{ + - } unaryExpression

spawnStatement:
spawn scopedType ({ paramSpec (, paramSpec)* })

statement:
declareStatement | createStatement ; | deleteStatement ; | relateStatement ; | unre-
lateStatement ; | selectStatement ; | forStatement | ifStatement |
whileStatement | tryStatement | throwStatement ; | loopControlStatement ; |
transactionStatement ; | spawnStatement ; | genAssignDeclareStatement ; |
userMethodStatement ; | lvalStatement ; | returnStatement ; | statementBlock

statementBlock:
{ (statement)* }

staticMethodOrEnum:
{ :: } (identifier ::)+ operationName { paramList }

stringLiteral:
(string-literal)+

throwStatement:
throw handle

transactionStatement:
(begin | commit | abort) transaction

tryStatement:
try statementBlock (catchStatement)+

type:
constDeclare (nativeType | userDefinedType)

unaryExpression:
{ unaryOperator } primitiveExpression

unaryOperator:
! | -

unrelateStatement:

354

Chapter 9: Action language reference
Complete action language grammar

unrelate handleOrSelf relationshipSpec handleOrSelf { using handleOrSelf }

userDefinedType:
scopedType

userDereference:
{ (* | &) }

userMethodOrVar:
handle -> methodName { paramList } | operationName paramList

userMethodStatement:
handle (-> methodName)+ { paramList } { assignmentExpression }

valueSpec:
attributeName : expression | chainSpec : expression

whereExpression:
(whereSpec | wherePrimitive)

wherePrimitive:
(handleOrSelf . attributeName arrayList | handleOrSelf) comparisonOperator
primitiveExpression

whereSpec:
(whereExpression (booleanOperator whereExpression)*)

whileStatement:
while booleanExpression statementBlock

The next chapter provides a complete reference to the build specification langauge.

355

10 Build specification reference

This chapter provides a reference for the keywords and commands you
use to compose and execute a build specification. These appear in
alphabetical order. Each page includes the syntax of the keyword or
command, a discussion of usage, and an example.

A simple example

The example below shows a very simple build specification. For a full
build specification that uses all the standard features, see “Complete
build specification example” on page 370.

component Component1
{

source MyIDLosFile.soc

 import ImportedComponent
 {

includePath=/this/is/where/the/component/is;
 libraryPost=someLibraryThisComponentNeeds;
 };

 package Package1;
 package ::Package2
 adapter Sybase
 {
 entity Package1::PersistentEntity
 };
};

356

Chapter 10: Build specification reference

Understanding the syntax notation

The syntax description for each keyword or command uses the
following conventions:

bold screen font indicates a literal item that appears exactly as
shown

italics indicates a language element that is defined elsewhere

plain text indicates a feature of the notation, as follows:

(item) parentheses group items together

(item)+ the item in parentheses appears one or more times

{ item } items in braces are optional

Chapter 10: Build specification reference
adapter

357

adapter
Defines an adapter block.

Syntax

adapter adapterName { buildLanguage };

Description

adapterName is the name of a valid, installed service adapter.

An adapter block defines a service adapter for a specific model element.
Each adapter must contain an interface or entity, depending on its type.

Adapters also have properties that affect they way they operate. Refer to
the documentation for a specific service adapter for more information
on the properties used by that adapter.

Example
adapter CORBA
{
 interface ::MyPackage::anInterfaceA;
 interface ::MyPackage::anInterfaceB;
};

358

Chapter 10: Build specification reference
component

component
Defines a component block.

Syntax

component identifier { implementation=service-name }
{ buildLanguage };

Description

A component block defines a component being built and will contain all
the information needed to build the component. A component may
implement one or more packages, or may simply contain interfaces to
an external implentation. All packages in a given component must be
listed in the order of dependency.

A component can act as a wrapper around a service implemented in
another technology. The generated wrapper will behave just like any
other component except that it uses a foreign implementation.

serviceName is the name of the foreign service being implemented.

Refer to the documentation for the individual adapter generator for
more information on wrapping a foreign service.

Warnings

None

Example
component MyComponent
{
 source MyIDLos.soc;
 package MyPackage;
};
component AnExternalComponent implementation=corba
{
 idlPath=MyIDL.idl;
};

Chapter 10: Build specification reference
group

359

group
Defines a logical collection of a given type.

Syntax

group identifier { buildLanguage };

Description

Allows for grouping model references and properties.

Warnings

None

Example
component MyComponent
{
 adapter SNMP
 {
 group OID
 {
 snmpPackageOID = 1.3.6.1.4.1.3004.2.1.4;
 interface MyPackage::anInterfaceA;
 interface MyPackage::anInterfaceB;
 };
 };
};

360

Chapter 10: Build specification reference
import

import
Specifies a component dependency, or aggregates components.

Syntax

import identifier { { importImplementation = (TRUE | FALSE) } };

Description

A component may depend on the services provided by another
component. You import a component so that its interface definitions
and link libraries can be loaded into the Design Center server at build
time.

The Design Center always knows where to locate built-in ObjectSwitch
components. If you want to import your own components from an
arbitrary location, you can specify this location using the importPath
property. Note that this property follows normal scoping rules, so you
can use different import paths for different components.

You can also aggregate components using the importImplementation
property in the build specification. This property defaults to FALSE.
Setting it to TRUE links the imported component’s implementation into
the one being built, with the performance benefit that all two-way
operations in the imported component are now local calls (not
dispatched through the event bus). The configuration for a component
with imported implementations is automatically generated from the
imported components’ configurations, and library dependency issues
are handled automatically.

Example
component MyComponent
{
 // set the include path to the component location
 importPath = /some/include/path;
 import DependentComponentA
 {

importImplementation=TRUE;
 };
};

Chapter 10: Build specification reference
Macros

361

Macros
Allows you to substitute parameters from the command line.

Syntax

Use in the build spec: $(macro-name)

Definition on the command line: swbuild -o macro-name=value

Description

Before the build specification is parsed, macros are evaluated and
substituted with values from the command line. Forms that do not
correspond to the syntax are not macros, and no substitution takes
place. To explicitly escape the $(sequence, you can use $$(. Thus
$$(NOTAMACRO) becomes $(NOTAMACRO) after substitution. Because
macros are evaluated before parsing, they can be used anywhere:

component $(COMPONENT_NAME)
{
 name=$(VALUE);
 $(NAME)=$(VALUE);
 name=”Macros can even be in $(STRINGS)”;
};

An undefined macro evaluates to the name of the macro. For example,
if $(VALUE) is not defined, it evaluates to VALUE, and the Design
Center issues a warning.

Example

A typical use of macros is to pass property values from the command
line.

component dcapiplugin
{
 source=dcapi.soc;
 package dcapi;

 includePath=../include;
 buildType=$(BUILD);
 numParallelCompiles=$(MAXPROCESS);
};

362

Chapter 10: Build specification reference
Macros

The command line associated with the example above would be
something like:

swbuild -o BUILD=PRODUCTION -o MAXPROCESS=4

Warnings

Macros are expanded anywhere, even in comments. This means you
can’t simply comment out lines containing undefined macros—you
must remove the offending macro call.

See also
swbuild

Chapter 10: Build specification reference
Properties

363

Properties
Specify options in a build specification.

Syntax

propertyName = value;

Description

Each property is a name-value pair that sets compiler build options for
the containing component or adapter.

propertyName is the name of a defined build property from the
properties table below.

value is a value as defined in the description column of the properties
table below.

The following table is a complete list of project and component
properties. For adapter properties refer to the appropriate section in the
documentation for the relevant adapter.

Property Type Default Description Applies to

importPath directory . Search paths
used for
imported com-
ponents

project, compo-
nent, component
(import, group)

buildPath directory . Directory for
generated out-
put.

project, compo-
nent

buildType choice DEVEL-
OPMENT

One of DEVEL-
OPMENT or
PRODUCTION
build

project, compo-
nent

cFlags string C compiler flags project, compo-
nent

ccFlags string C++ compiler
flags

project, compo-
nent

debug choice FALSE Enable SWAL
debug code gen-
eration.

project, compo-
nent

364

Chapter 10: Build specification reference
Properties

includePath directory . Search paths
used for
included files

project, compo-
nent

importImple-
mentation

choice FALSE Whether to
aggregate the
imported com-
ponent into the
one being built.

imported com-
ponent

ldFlags string Linker flags project, compo-
nent

libraryPath directory Search path for
libraries

project, compo-
nent

libraryPost string Libraries linked
AFTER runt-
ime libraries

project, compo-
nent

libraryPre string Libraries linked
BEFORE runt-
ime libraries

project, compo-
nent

methodsPerFile numeric 50 Number of
methods gener-
ated per file.
Min: 10, Max:
100

project, compo-
nent

name string Name of the
generated
engine

component

numParallel-
Compiles

numeric 1 Number of par-
allel compila-
tions, min. 1

project, compo-
nent

description string Description
string for this
engine

component

engineGroup string Applica-
tions

ECC engine
group for this
component

component

Property Type Default Description Applies to

Chapter 10: Build specification reference
Properties

365

When you use an adapter factory, additional properties specific to that
adapter may also be available. See the relevant adapter factory
documentation for these properties and the values they take.

Example
// a global property will apply to both components
buildPath = some/build/path;
component MyComponentA
{
 // property local to MyComponentA
 source = MyIDLosA.soc
 {
 // property local to MyIDLosA
 includePath = some/include/path;
 };
};
component MyComponentB
{
 // properties local to MyComponentB
 source = MyIDLosB.soc
 name=myWonderfulComponent
};

engineService string Add an engine
service to this
engine.

component

extraArchive-
File

file Extra file to
place in engine
archive

component

Property Type Default Description Applies to

366

Chapter 10: Build specification reference
source

source
Specifies a source file for a component.

Syntax

source identifier;

Description

identifier specifies the filename.

Source files can be added to a component specification at a global or
component level. A source file can be an IDLos, action language or
header file.

Source files must be listed in the correct order of dependency. It is best
to list all source files, including .act files, in the specification instead of
as a #include in the IDLos file. This will optimize Design Center server
reloading.

Properties may be associated with a source file, as follows:

• includePath
• libraryPath

Warnings

None.

Example
component MyComponent
{
 source /some/source/path/MyIDLos.soc;
 source /some/source/path/MyAL.act;
};

Chapter 10: Build specification reference
swbuild

367

swbuild
Build a component from the command line.

Syntax

swbuild {-a} {-o macro-name=value} {specification-file}

Description

The -a option suppresses building; the Design Center will perform an
audit only.

The -o option allows you to set options for macros defined in the build
specification.

The specification-file indicates the source file for the build specification.
If you omit this argument, the Design Center reads the build
specification from standard input.

Example
swbuild mybuildspec.osc

See also

Macros

368

Chapter 10: Build specification reference
Complete build grammar

Complete build grammar
 componentSpecification :

(componentStatement | propertyStatement)* end-of-file

 componentStatement :

component identifier (implementation identifier)*
{ componentBlock } ;

 componentBlock :

{ (sourceStatement | importStatement | propertyStatement |
adapterStatement | modelrefStatement | includeStatement)* }

 importStatement :

import identifier { propertyBlock } ;

 sourceStatement :

source valueToken { propertyBlock } ;

 propertyBlock :

{ (propertyStatement)* }

 propertyStatement :

nameToken = { valueToken } ;

 nameToken :

identifier

 valueToken :

compoundQuotedLiteral | unquotedLiteral

 adapterStatement :

adapter identifier { adapterBlock } ;

 adapterBlock :

{ (propertyStatement | groupStatement | modelrefStatement)* }

 groupStatement :

group identifier { groupBlock } ;

Chapter 10: Build specification reference
Complete build grammar

369

 groupBlock :

{ (propertyStatement | modelrefStatement)* }

 modelrefStatement :

model-reference scoped_name { propertyBlock } ;

 scoped_name :

{ :: } identifier (:: identifier)*

 unquotedLiteral :

literal-content

 compoundQuotedLiteral :

quotedLiteral (quotedLiteral)*

 identifier :

[a-zA-Z][a-zA-Z0-9_]*

 includeStatement :

include (< | ") filename (> | ")

370

Chapter 10: Build specification reference
Complete build specification example

Complete build specification example
/*
 * Global properties. These appear outside of any component
 * block, and apply to all components.
 *
 * The following tests global properties and tries to trick
 * our parser with macros and comments.
 *
 */

globalName1=globalValue1;
global$(NAME)2=global$(VALUE)2;
$(GLOBALNAME3)=$(GLOBALVALUE3);

/*comment*/global$(NAME)4/*$(comment)*/=global$(VALUE)4;

// Empty values are allowed. All three of the following are empty
values:
emptyValue="";
emptyValue=;
emptyValue=$(EMPTYVALUE);

// A component statement describes a component to be built.
// In the plugin service project tree, this maps to ElemEngine

component Component1
{

localName1=localValue1;
local$(NAME)2=local$(VALUE)2;
$(LOCALNAME3)=$(LOCALVALUE3);

quotedValue = "

What you see is what you get... almost.

Escape sequences in this string follow the same
rules as IDLos.

So, you can \"escape a string\"
insert a tab \t, etc.

Check out unquoted literals if you are specifying file

Chapter 10: Build specification reference
Complete build specification example

371

paths.

";

escapedString="Escaped quote:\" Newline:\n Escaped backslash:\\";

quotedCompoundValue =
"Notice how strings are allowed to "
"continue, just like in C++;";

quotedMacroValue = "quoted$(VALUE)1";

// Note how unquoted literals don't have any escape sequences.
// This makes file names on NT easy.

pathValue1=/some/file;
pathValue2=C:\some\file;

escapedMacro1 = $$(NOTAMACRO);
escapedMacro2 = "$$(NOTAMACRO)";
escapedMacro3 = "This is $$(NOTAMACRO), OK?";

// The source statement indicates a source file to be
// loaded into the DC server. Normally source files
// do not need properties. However, if you are using
// #include in your source file, you may wish to define
// an includePath which only applies to your file. Be
// aware that using #include is a bad idea. You should
// list all your files here (both IDLos and Action Language)
// because it allows the DC to optmize reloads.

source MyIDLosFile.soc
{

includePath = /some/path/name;
};
source MyActionLanguageFile.act;

// The import statement establishes a dependency to
// another component. The DCAPI plugin will search for
// this component using includePath. You can specify
// additional includePath, libraryPost, etc, parameters
// for this component only by using a property block.

 import ImportedComponent
 {

includePath=/this/is/where/the/component/is;
 libraryPost=someLibraryThisComponentNeeds;
 };

372

Chapter 10: Build specification reference
Complete build specification example

 // You must list the packages that will be
 // implemented in your componenent. If leading
// "::" is left off, it is implicit. You can also
// assign properties to model references.

 package Package1;
 package ::Package2
 {
 someproperty=somevalue;
 };

 // You may use the services of an adapter to
 // bind parts of your model to a particular
 // implementation. It is up to each adapter as
// to what sort of model references and properties
// they allow

 adapter Sybase
 {
 entity Package1::PersistentEntity
 {
 readString="Some SQL string";
 writeString="Some SQL string";
 };
 };

 // You can have more than one adapter, of course.

 adapter CORBA
 {
 interface /*comment*/

Chapter 10: Build specification reference
Complete build specification example

373

MySecondPackage::MyPublicInterface;
 };

 // SNMP used plugin service "folders" to group
 // configuration information. We need a way to
 // preserve this. Essentially, this adds hierarchical
 // properties to the DC. We're still using ElemFolder
// in the plugin service for this. We just call them
// "groups" here.

 adapter SNMPAgent
 {
 group OID
 {
 snmpPackageOID=1.2.3.4.5.6;
 interface Package1::Interface1;
 interface Package2::Interface2;

module Package1::Module1;
 };
 };
};

// You can build multiple components in the same
// spec. Componets can also have different implementations

component Component2 implementation java
{

 // blah, blah

};

// It should be possible to completely parameterize
// a build

component $(Component3)
{
package $(Package3);
};

374

Chapter 10: Build specification reference
Complete build specification example

11 PHP reference

Each PHP extension function call appears in this section on its own
page with a top-level syntax definition, a description of the function and
an example.

About the notation

The syntax description for each statement or function uses the
following conventions:

bold screen font indicates a literal item that appears exactly as
shown

italics indicates a language element that is defined elsewhere

plain text indicates a feature of the notation, as follows:

(item) parentheses group items together
(item)* the item in parentheses appears zero or more times
(item)+ the item in parentheses appears one or more times
{ item } items in braces are optional
(item1 | item2) the vertical bar indicates either item1 or item2 appears

For example:

keyword { optionalKeyword }
 { optionalThing }(zeroOrMoreRepeatingThing)*

 (oneAlternative | otherAlternative | thirdAlternative)
375

Chapter 11: PHP reference
os_connect
os_connect
Creates a new connection to ObjectSwitch osw engine.

Syntax
$conn_id = os_connect ($host, $port);
$conn_id = os_connect ($host);
$conn_id = os_connect ();

Description

This function creates a connection between the PHP process and the
osw engine.

conn_id is a PHP variable.

host and port are optional parameters that locate the osw engine.

If host and port are not set they will default to the host and port specified
in the php.ini file.

Warnings

None

Error Conditions

• Not able to connect to ObjectSwitch server
376

Chapter 11: PHP reference
os_create
os_create
Creates an ObjectSwitch object and returns its reference.

Syntax

$objr = os_create ($conn_id, $scopedName, $attrList);
$objr = os_create ($conn_id, $scopedName);

Description

This function creates an object and returns its reference in the variable
objr. If the object has attributes, an optional attrList could be passed in
to set the attribute initial values.

When the scopedName type is a singleton, this call acts like the create
singleton in action language. It creates the singleton if it does not exist.
Otherwise, it returns the object reference.

conn_id is the value returned by os_connect().

objr is the return value.

scopedName is a fully scoped ObjectSwitch interface name.

attrList is an optional associative array of attribute names and values.

Example
//
// create a sales person with “name” initialized
//
$salesType = “myPackage::Salesman”;
$salesAttrArray = array(‘name’ => ‘Slick Willy’);
$salesHandle = os_create($conn_id, $salesType, $salesAttrArray);

//
// create a customer - without attribute array
//
$custType = “myPackage::Customer”;
$custHandle = os_create($conn_id, $custType);
377

Chapter 11: PHP reference
os_create
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid scoped name
• Invalid attribute name
• Unsupported type
• No create access
• Duplicate Key
378

Chapter 11: PHP reference
os_delete
os_delete
Deletes an ObjectSwitch object.

Syntax

os_delete($conn_id, $objrList);
os_delete($conn_id, $objr);

Description

The second parameter may be a either a single object reference or an
array containing a list of object references.

conn_id is the value returned by os_connect().

objrList is an array of valid object instances to delete.

objr is a valid object instances to delete.

Warnings

None.

Example
//
// Delete all Orders
//
$sn = “mypackage::Order”;
$orderList = os_extent($conn_id, $sn);
os_delete($conn_id,$orderList);

//
// delete a single object
//
$objr = os_create($conn_id, $sn);
os_delete($conn_id, $objr);

Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• No delete access
379

Chapter 11: PHP reference
os_disconnect
os_disconnect
Disconnect from the ObjectSwitch engine.

Syntax
os_disconnect ($conn_id);

Description

conn_id is the return value from a call to os_connect().

Warnings

None.

Example
/* close a connection to the osw engine */
os_disconnect($xconn);
380

Chapter 11: PHP reference
os_extent
os_extent
Retrieve the extent of object handles of a given type.

Syntax

$objrList = os_extent($conn_id, $scopedName, $attrList);
$objrList = os_extent($conn_id, $scopedName);

Description

This function will select objects of a given type. If attrList is provided, it
contains a list of name-value pairs that are ANDed together as a where
clause to filter the number of object handles being returned.

If the objects are keyed and attrList has key coverage, a keyed lookup
will be performed.

conn_id is the value returned by os_connect().

objrList is the return value and is a PHP array of scalar values.

scopedName is a string containing the fully scoped name of a type.

attrList is an optional associative array of attribute names and values.

Warnings

None.

Example
//
// get all customers
//
$sn = “myPackage::Customer”;
$custList = os_extent($conn_id, $sn);

//
// return all customers in California
//
$sn = “myPackage::Customer”;
$whereClause = array(‘state’ => ‘CA’);
$custList = os_extent($conn_id, $sn, $whereClause);
381

Chapter 11: PHP reference
os_extent
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid scoped name
• Invalid attribute name
• Unsupported type or bad value
• No extent access
382

Chapter 11: PHP reference
os_get_attr
os_get_attr
Retrieves the values of the attributes in an ObjectSwitch object.

Syntax

$attrList = os_get_attr($conn_id, $objr, $filter);
$attrList = os_get_attr($conn_id, $objr);

Description

This function retrieves attribute values from an object. If filter exists,
only the values of those attributes named in the filter array will be
returned. Otherwise, all attributes values will be returned.

conn_id is the value returned by os_connect().

attrList is an optional associative array of attribute names and values.

objr is an ObjectSwitch object handle.

filter is an optional associative array of attribute names and values.

Warnings

None.

Example
//
// get all attributes of a cusotmer
//
$attrs = os_get_attr($conn_id, $custHandle);
for (reset($attrs); $name = key($attrs); next($attrs))
{

 $avalue = $attrs[$name];
 print “$name = $value\n”;

}

//
// get the state attribute only
//
$filter = array (“state” => ““);
$attrs = os_get_attr($conn_id, $custHandle, $filter);
$state = $attrs[“state”];
print “This customer is in state of $state\n”;
383

Chapter 11: PHP reference
os_get_attr
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid attribute name
384

Chapter 11: PHP reference
os_invoke
os_invoke
Invoke an operation on an ObjectSwitch object.

Syntax

$returnValue = os_invoke($conn_id, $objr, $opName, $param, $ex);
$returnValue = os_invoke($conn_id, $objr, $opName, $param);
$returnValue = os_invoke($conn_id, $objr, $opName);

Description

This function is used to invoke an operation on an object. The
returnValue is not required on void operations. If a parameter is an
inout or out parameter the value of that array element in param will be
modified with the result parameter value after a call. If the operation
raises user defined exception, $ex will contain the name of the
exception type as a string upon return.

conn_id is the value returned by os_connect().

returnValue is the return value of the operation upon completion.

objr is a valid object instance handle.

opName is the name of an operation.

param is a nested associative array of parameter name and value pairs.

ex is the name of user exception thrown by the operation.

os_invoke does not work with in or inout parameters of sequence type.
385

Chapter 11: PHP reference
os_invoke
Example
//
// call a void operation that does not have any params
//
os_invoke($conn_id, $objr, “runtest”);

//
// call an operation with parameters that returns a boolean
//
$params = array (“name” => “Smith”, “number” => 5);
$ret = os_invoke($conn_id, $objr, “register”, $params);
if ($ret)
{

print “OK\n”;
}
else
{

print “register failed\n”;
}

When an operation raises user defined exceptions, os_invoke() can get
the exception type, but not the exception data if it has member fields.

//
// operation with user defined exceptions
//
$userex = ““;
$params = array();
os_invoke($conn_id, $objr, “myOp”, $params, $userex);
if ($userex != ““)
{

print “Caught user exception $userex\n”;
}

Array types can be used as in, out, inout parameters and return values.
Sequence types can be used as out parameter or return values.

//
// array or sequence type as out param
//
$params = array (“myList” => array());
$ret = os_invoke($conn_id, $objr, “getList”, $params);
$list = $params[“myList”];
for ($i = 0; $i < count($list); $i++)
{

$value = $list[$i];
print “list[$i] = $value\n”;

}

386

Chapter 11: PHP reference
os_invoke
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid operation name
• Invalid parameter name
• Unsupported type or bad value
• Application exception
387

Chapter 11: PHP reference
os_relate
os_relate
Relates two interfaces.

Syntax

os_relate($conn_id, $fromObjr, $roleName, $toObjr);

Description

This function relates two objects using the relationship role roleName.

conn_id is the value returned by os_connect().

fromObjr is a valid object reference handle.

roleName is the name of a role in a relationship between the “from”
and “to” objects.

toObjr is a valid object reference handle.

Warnings

None.

Example
$salesType = “myPackage::Salesman”;
$salesAttrArray = array(‘name’ => ‘Slick Willy’);
$salesHandle = os_create($conn_id,$salesType, $salesAttrArray);

$custType = “myPackage::Customer”;
$custAttrArray = array(‘name’ => ‘Lucent’, ‘state’ => ‘NJ’);
$custHandle = os_create($conn_id,$custType, $custAttrArray);
os_relate($conn_id,$salesHandle, “hasCust”, $custHandle);

Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid role name
388

Chapter 11: PHP reference
os_role
os_role
Retrieves an array of handles by navigating across a relationship.

Syntax

$objrList = os_role($conn_id, $objr, $roleNam, $attrList);
$objrList = os_role($conn_id, $objr, $roleNam);

Description

This function returns an array of object references as it navigates
across the appropriate relationship. The name-value pairs in attrList are
ANDed together to act as a where clause to filter the number of object
handles being returned.

conn_id is the value returned by os_connect().

objrList is a list of object references.

objr is an ObjectSwitch object handle.

roleName is a relationship role name.

attrList is an optional associative array of attribute names and values.

Warnings

None.

Example
/*
** assume Salesperson is related 1:M with customer
** and that $salesHandle is already populated with a
** valid Salesperson.
*/
$cList = os_role($conn_id, $salesHandle, “sellsTo”);
for (reset($cList); $cust = current($cList); next($ctList))
{

 /* do something with $cust */
}

389

Chapter 11: PHP reference
os_role
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid role name
• Invalid attribute name
• Unsupported type or bad value
390

Chapter 11: PHP reference
os_set_attr
os_set_attr
Sets a value in an attribute of an ObjectSwitch object.

Syntax

os_set_attr($conn_id, $objr, $attrList);
os_set_attr($conn_id, $objr, $name, $value);

Description

This function sets a value of an object attribute. More than one attribute
value can be set in an object.

conn_id is the value returned by os_connect().

objr is an ObjectSwitch object handle.

attrList is an optional associative array of attribute names and values.

setting uninitialized attributes of sequence type does not work. However,
there is a work around using pre-set triggers.

Example
//
// set the name of a customer
//
$attrArray = array(‘name’ => ‘John’);
os_set_attr($conn_id, $objr, $attrArray);

//
// or using
//
os_set_attr($conn_id, $objr, “name”, “John”);

//
// set array attribute
//
$value = array (1, 2, 3, 4, 5);
$attrArray = array (“longList” => $value);
os_set_attr($conn_id, $objr, $attrArray);
391

Chapter 11: PHP reference
os_set_attr
Using pre-set trigger to set sequence attributes This section
describes the workaround that lets you set sequence attributes from
PHP.

//
// set sequence attribute with pre-set trigger
// this is what needs to be done in the model.
//
package Example
{

typedef sequence<string>StringList;

interface Complex
{

attribute StringListt_stringlist;
};

entity ComplexImpl
{

attribute StringList_stringlist;

void t_stringlist_init();
trigger t_stringlist_init upon pre-set t_stringlist;

};

expose entity ComplexImpl with interface Complex;
};

action ::complexTest::IComplexImpl::t_stringlist_init
{`

declare StringList l;

disableTriggers();
self.t_stringlist = l;
enableTriggers();

`};
392

Chapter 11: PHP reference
os_set_attr
Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid attribute name
• Attribute is readonly
• Unsupported type or bad value
• Duplicate Key
393

Chapter 11: PHP reference
os_unrelate
os_unrelate
Unrelates two objects.

Syntax

os_unrelate($conn_id, $fromObjr, $roleName, $toObjr);

Description

This function unrelates two objects that are currently related using the
relationship role roleName.

conn_id is the value returned by os_connect().

fromObjr is a valid object reference handle.

roleName is a relationship role name.

toObjr is a valid object reference handle.

Warnings

None.

Example
$custList = os_role($conn_id, $salesHandle, “:sellsTo”);
for (reset($custList); $cust = current($custList); next($custList))
{

 os_unrelate($conn_id, $salesHandle, ‘hasCust’, $cust);
}

Error Conditions

• Not able to connect to ObjectSwitch server
• Invalid handle
• Invalid role name
394

77

A
abort transaction action language statement

223, 229–230
abstract IDLos property

and interfaces 89
action IDLos statement 127–127

implements operation 51
action language 165–??, 185–242

arithmetic operators 171
declarations 167
enclosed in IDLos action statement 127
instant example 166
keywords 167
parameters 180
variable names must not match parameter names

168
variables 167

actions 127–127
execution of 19–21
implementing states and operations 96
scope of 169

adapters
adding attributes to 26
and interfaces 85

Application Server
configuring 63–69
See also nodes

applications
partitioning 13

arithmetic
operators 171

attribute IDLos statement 47, 128–128
attributes 128–128

defined 5, 1
Design Center icon for 16
in IDLos 47
initial values 192
as keys 138–139

read-only 84
setting properties for 26
triggers on 153

audit ??–29

B
begin transaction action language statement

223, 229–230
binary operators 171
boolean operators 171
branching See if
break action language statement 188
building

projects 27–30
built-in functions 7–??

C
C++

including header files 167
interfacing to 12–13

callbacks
using abstract interfaces for 89

cardinality action language operator 189
catch action language statement 201–204
chainSpec 186
commands
regedit 51
swadmintool 11
swcoord 7
swdc -c clobber 60
swdc -c forcestop 60
swmon 27
swregistry 53

commit transaction action language state-
ment 223, 229–230

components See packages
configuring

engines 61

Index

Page numbers in this index are prefixed with letters, for example AG:21-24, to show which
volume of the user documentation contains that entry.

DG = Creating ObjectSwitch Applications AG = Managing ObjectSwitch Applications
SY = Advanced ObjectSwitch Modeling

78

Index

hash table sizes 69
ObjectSwitch nodes 63–69
registry variables 61–69
System Coordinator 66–69

continue action language statement 191
control flow See if; loops
create action language statement 192–195

initial state of object 95
creating

objects 192–195
objects, initial state of 95
singletons 194–195

D
data members See attributes
data types

action language 231–232
in action language 176
C++ and equivalent ObjectSwitch types 13
IDLos 34
inheritance of "shadow" types 102
scoping 176
user-defined 155–155
user-defined types, exposing 85

database adapters
defining transient attributes in persistent objects

26
date functions 11
deadlocks

automatic detection of 23
explicitly managing deadlocks in spawned

threads 224
debugging

See also trace files
declarations 196–197

forward 115, 132
order of 115

declare action language statement 196–197
delete action language statement 198

See also finished
deleting

events sent to deleted objects 18
objects 198

deployment directory
of engines 21

Design Center ??–30
administration 57–60
erasing repository 60

icons 16
internal details 57–??
setting up new users 57–59

destroying
objects 198

destroying objects
C++ code, memory deallocation in 13

distribution
creating objects on remote nodes 192
location code used in object reference 33
strategies 13

E
else clause in action language See if
empty action language operator 199
Engine Control Center 3, 11–25

starting 11
engines

adding to nodes 20
configuring 16, 61
defined 5, 2
deployment directory of 21
removing from nodes 21
started by coordinator 6
starting and stopping 15
viewing status of 12

entities 132–133
associative 65, 147
defined 5, 2
Design Center icon for 16
exposing 135–135
exposing with interfaces 82–87
in IDLos 39–96
local 45–60, 140–141
as namespaces 113
states 77–96
triggers on 66, 153

entity IDLos statement 39–96, 132–133, 140–141
enum IDLos statement 131–131
enumerations 131–131
environment variables
PATH 58
SW_HOME 57

event bus
local operations not dispatched via 55
operations in local entities not dispatched via 45

events
asynchronous 20

Index

79

defined 5, 2
processing of 17–18
synchronous 20
to deleted objects 18
See also signals

exception IDLos statement 134–134
exceptions 134–134, 201–204

example 202
raises IDLos keyword 51
system exceptions 201–??
See also throw; catch; try

expose IDLos statement 135–135
extentless IDLos property 43
extents

defining extentless entities 43
determining number of objects in 189
selecting from 218

F
filters

trace messages 4
finished 97
for action language statement 206

using break to exit 188
using continue to skip iterations 191

for...in action language statement 208
functions

built-in 7–??
member See operations 7

G
generalization See inheritance

H
handle See object reference
hash tables 69

I
icons

Design Center 16
IDL

and IDLos syntax 34
IDLos 31–164

attributes 47
correspondence to UML 32
entities 39–96
keys in 60
long example 117–122

signals 97
strings, built-in operations on 173
triggers 153–154
types 34

if action language statement 210–212
importing

models ??–16
in

parameter 50
See also for...in

include path
for IDLos includes 16

inheritance 92–110
of interfaces 110
and operations 103
restrictions 99

initialization
automatically invoking operations for 57
coordinator starts engines 6
coordinator’s role in 5

initialize IDLos property
order of invokation 16

initialize IDLos property 57
inout parameter 50
interface IDLos statement 82–87, 136–137
interfaces 136–137

abstract 89
and adapters 85
cross-package inheritance 112
defined 5, 2
Design Center icon for 16
exposing entities 135–135
IDL syntax identical to IDLos 34
inheritance 110
instantiating 83
as namespaces 113
and packages 78, 82–87
and relationships 85
relationships between 136

iteration See loops

K
key IDLos statement 60, 138–139
keys 138–139

Design Center icon for 16
keywords

action language 167

80

Index

L
libraries

using 12–13
local entities 45–60, 140–141

and interfaces 89
local operations 55
location codes

used in object references 33
locks

deadlocks 23
transactions 21

loops
for 206
for...in 208
while 235

loops
using break to exit 188
using continue to skip iterations 191

M
member functions See operations
members See attributes; operations
messages See signals
models

importing ??–16
See also IDLos

module IDLos statement 142–142
modules 113, 142–142

N
names

namespaces 112–116
resolution of partially scoped names 115
scope of 112–116
scoped 113

namespaces 112–116
different model elements and their namespaces

113
packages as 112, 113
scoping names in 113

navigating
relationships 186, 218

nodes
configuring 63–69
Design Center node 57

notifiers
example 117–122
using abstract interfaces for 89

O
object references 170

empty 199
OID 33
self 222

objects
creating 192–195
defined 6, 2
deleted, events sent to 18
destroying 198
destroying, memory deallocation in C++ code 13
empty reference to 199
reference to self 222
See also object references; entities

ObjectSwitch
languages See IDLos, action language

ObjectSwitch modeling
overview 32

ObjectSwitch Monitor 3
starting 27
user interface 29
viewing objects in shared memory 34

OID
object references 33

operation IDLos statement 143
operations 143

defined 6, 2
Design Center icon for 16
inherited 103
initialize 57
local 55
recovery 57
returning values from 216
terminate 57
virtual 106–110

operators 171
boolean 171
precedence 171
unary and binary 171

os 265, 265, 297, 297
os_connect php extensions 252, 252, 252, 284,

284, 284
os_createphp extensions 253, 253, 285, 285
os_deletephp extensions 255, 255, 287, 287
os_disconnect php extensions 256, 288
os_extent php extensions 257, 257, 289, 289
os_get_attr php extensions 259, 259, 291, 291
os_invoke php extensions 261, 261, 261, 293, 293,

Index

81

293
os_relate php extensions 264, 296
os_rolet php extensions 265, 265, 297, 297
os_set_attr php extensions 267, 299
os_unrelate php extensions 269, 302
out parameter 50

P
package IDLos statement 145–146
packages 145–146

allocating to components 19
allocating to engines 20
as namespaces 112, 113
as organizing components 34
Design Center icon for 16
and interfaces 82–87
user-defined types in 176

parameters
accessing in action language 169
in action language 180
in, out, inout 50
named vs. positional 180
names must not match variable names 168

partitioning
strategies 13

PATH See environment variables
performance

and transaction size 23
polymorphism 106–110
projects

building 27–30

R
raises IDLos keyword 51
read-only attributes 84
recovery 6

automatically invoking operations for 57
engine restart timing, configuring 67
local entities not recoverable 140

recovery IDLos property
order of invokation 16

recovery IDLos property 57
regedit See commands; registry, editor
registry

contents of 61–69
default 5
editor ??–53
engine configuration 61

graphical vs. command-line editing 3
modifying from command line 51–55
used by system coordinator 5
variables 61–69
viewing 52

relate action language statement 214–215
relationship IDLos statement 147–148
relationships 62–73, 147–148

associative 65
between interfaces 136
Design Center icon for 16
determining number of related objects 189
exposing with interfaces 85
initialization on object creation 192
navigating 186, 218
relating objects with 214–215, 233
roles 62
selecting across 218
See alsorelate

repository
erasing 60

return action language statement 216
role IDLos statement 147–148
roles 62, 147–148

Design Center icon for 16
triggers on 153

S
scope 112–116

of an action 169
SDL wrapping 33
select action language statement 218
selecting

objects, extents, and singletons 218
self action language keyword 222

in const operations 50
shared memory

configuring size of 65
object references & type IDs 33
specifying access permissions for 65

signal IDLos statement 97, 149–149
signals 149–149

accessing parameters in action language 169
defined 6, 2
Design Center icon for 16

singleton IDLos property 43
singletons

creating 194–195
designating 43

82

Index

and interfaces 89
selecting 218

spawned thread, example of 224
state machines 77–96

stateset 150
subtype cannot override 100
transition events using signal 149
transitions 152–152

state transitions 152–152
states 77–96

defining state actions 96
transitions 98

stateset IDLos statement 150
strings

built-in operations 173
struct 151–151
structures 151–151
subtypes

defined 6, 6, 2, 2
supertype/subtype 92–110
SW_HOME See environment variables
swadmintool See commands; Engine Control Cen-

ter
swcoord See commands; System Coordinator
swdc See commands
swmon See commands; System Monitor
swregistry See commands
System Coordinator 5–9

adding engines 20
attaching to 12
configuring 66–69
configuring engines for 16
removing engines 21
starting 7
using Engine Control Center with 11–25

system exceptions 201–??

T
terminate IDLos property

order of invokation 16
terminate IDLos property 57
termination

automatically invoking operations for 57
threads

spawned, example 224
spawning new 223–228

throw action language statement 201–204
time functions 11

timers 7–9
trace files 3

configuring tracing 67–68
transaction action language statements 223,

229–230
transactions
abort transaction 223, 229–230
begin transaction 223, 229–230
commit transaction 223, 229–230
handling deadlocks in spawned threads 224
local entities not recoverable 140
locks 21
managing transactions in spawned threads 229
processing 21
in spawned threads 223, 223, 223, 223

transition IDLos statement 98, 152–152
trigger IDLos statement 70–??, 153–154
triggers 153–154

entity 66
try action language statement 201–204
typedef 155–155
types

supertype/subtype, defined 6, 2

U
UML

instant overview 4, 2
unary operators 171
unrelate action language statement 233
users

setting up Design Centers for 57–59
using IDLos keyword 147

V
variables 167

declaring 196–197
names must not match parameter names 168

virtual IDLos property 57, 106–110

W
while loops in action language 235

using break to exit 188
using continue to skip iterations 191

	About this book
	Introduction
	Building components
	IDLos and Action language

	Contents
	Part One: Creating ObjectSwitch Applications
	1 Introduction
	ObjectSwitch components
	Modeling a component
	Component specification
	Building a component

	UML and IDLos
	Terminology

	2 Creating ObjectSwitch models
	Models
	Object oriented
	Component oriented
	Richly typed
	Adaptable
	Importing and exporting IDLos
	Importing a model from an IDLos file
	Exporting a UML model to IDLos
	Exporting UML from the command line

	An example
	Visual Design Center
	IDLos

	Entities
	Nested types
	Namespace
	Relationships
	Inheritance
	Exposure
	Visual Design Center
	1 click on the entity icon in the toolbar
	2 click somewhere in a package or module diagram
	Class Specification dialog

	IDLos
	Entity properties
	Setting properties
	singleton
	extentless

	Local entities
	Exposure
	Lifecycle operations
	Visual Design Center
	1 click on the local entity icon in the toolbar
	2 click somewhere in a package or module diagram

	IDLos

	Attribute
	Visual Design Center
	1 open the Class Specification dialog (see “Class Specification dialog” on page�17)
	2 click on the Attributes tab
	3 click on the Add button

	IDLos
	Read-only attributes
	Specifying a ready-only attribute

	Operation
	Parameters
	Return type
	Exceptions
	One-way and two-way operations
	Visual Design Center
	1 open the Class Specification dialog (see “Class Specification dialog” on page�17)
	2 select the Operations tab
	3 click the Add button
	General tab
	Parameters tab
	Action Language tab
	Modeless action language editor
	Raises tab

	IDLos
	Operation properties
	Setting operation properties
	local
	const
	oneway
	virtual
	initialization, recovery, termination
	packageinitialize
	Lifecycle example
	IDLos
	Automatic target instance

	Key
	Visual Design Center
	IDLos

	Relationship
	Roles
	Visual Design Center
	1 select the Unidirectional Association icon in the toolbar
	2 click and hold the mouse button pressed on one of the entities
	3 drag the cursor to the second entity

	IDLos
	Associative relationships
	Visual Design Center
	1 right-click on the line representing the relationship
	2 select Open Specification ... in the context menu
	3 click on the Add Association Entity tab
	4 select the entity from the Name drop-down list

	IDLos

	Entity trigger
	commit, abort
	create, refresh, state-conflict
	delete
	Visual Design Center
	IDLos

	Attribute trigger
	pre-get, post-get, pre-set, post-set
	Visual Design Center
	IDLos

	Role trigger
	relate, unrelate
	Visual Design Center
	1 open the Association Specification dialog for the relation (right-click on the relationship and...
	2 select the operation from the relateTrigger drop-down selection box
	1 open the Association Specification dialog for the relation (right-click on the relationship and...
	2 select the operation from the unrelateTrigger drop-down selection box

	IDLos
	Associative role triggers
	1 add the trigger operation announceMarriage(in ::MarriageCertificate mc) to the Wife entity
	2 open the Association Specification dialog for the Marriage relationship
	3 select the trigger operation announceMarriage from the relateTrigger drop-down selection box

	Module
	Visual Design Center
	IDLos

	Package
	Using Packages
	Visual Design Center
	1 click on the ObjectSwitch package icon in the toolbar
	2 click anywhere in the Class Diagram: Logical View / Main window

	IDLos
	Example
	Package properties
	Setting package properties

	Interface
	Nested types
	Namespace
	Association
	Instantiation
	Exposure
	Interfaces and adapters
	Visual Design Center
	1 click on the interface icon
	2 click somewhere in the package or module diagram
	1 click on the realizes icon
	2 click on the entity you want to expose and while holding the mouse button pressed, drag the cur...

	IDLos
	Interface properties
	Setting interface properties
	abstract
	Access control

	Local Interface
	Visual Design Center
	1 click on the interface icon
	2 click somewhere in the package or module diagram
	3 open the local interface’s Class Specification dialog (see “Class Specification dialog” on page...
	4 select kabLocalInterface from the stereotype drop-down selection box
	1 click on the realizes icon
	2 click on the local entity you want to expose and while holding the mouse button pressed, drag t...

	IDLos

	State machine
	Visual Design Center
	IDLos

	State
	Actions
	Visual Design Center
	1 click on the State or Final State icon in the toolbar
	2 click somewhere in the Statechart diagram

	IDLos
	finished

	Signal
	Visual Design Center
	IDLos

	Transition
	Inheritance
	Entity inheritance
	What do subtypes inherit?
	What can subtypes add?
	Visual Design Center
	1 click on the Generalization icon in the toolbar
	2 click an hold the mouse on the subtype
	3 pull the mouse to the supertype and release

	IDLos
	Shadow types

	Operations
	Redefining operations
	Virtual operations and polymorphic dispatch

	Interface inheritance
	Inheritance within a package
	Cross-package inheritance

	Namespaces
	Modules
	Model elements defining namespaces
	Scoped names
	Ordering and forward declarations in IDLos

	A big example
	Visual Design Center
	IDLos

	3 Action language
	Overview
	Why is there an action language?
	Action language
	What is action language like?

	Some basic features of the action language
	Variables
	Manipulating data
	Implicit conversion between string and numeric types
	Name spaces
	Data types

	Control structures
	Loops
	Branches

	Manipulating objects
	Creating objects
	Deleting objects
	Singletons
	Object references
	Operation and signal parameters
	Accessing operations and attributes
	Handling relationships

	4 Building ObjectSwitch components
	1 Design an implementation
	2 Build the model into a deployable component
	The ObjectSwitch component
	What is a component specification?
	Defining a component specification
	1 Create the project. Define the structure of your implementation (for example: two components, o...
	2 Populate the specification. Select the elements from your model for each part of the implementa...
	3 Add properties. Select and add the properties to the model elements you are implementing.

	Graphics vs Text to build a component specification

	Creating a project
	Visual Design Center
	1 You select the project icon from the palette and drag it into the project window.
	2 To rename the project, right click on the project name and select Rename from the menu. Type in...

	Text
	Project properties
	Visual Design Center
	1 Click on the “+” sign on the left of the project icon to expose the Properties tag immediately ...
	2 Right click to open the pop-up menu and select Add Properties.
	3 Highlight the property you wish to add from the property list and click OK. This adds the new p...
	4 Right click the new property and select Edit Properties.
	5 Enter the property value, then highlight the selection. Click on OK.

	Editing a project property
	Text

	Working with model sources
	Visual Design Center
	Text

	Defining a component
	Visual Design Center
	Text
	Component properties
	Visual Design Center
	Text

	Putting packages in a component
	Visual Design Center
	Text

	Importing another component
	Visual Design Center
	1 Open File -> Import from the Design Center menu.
	2 Select the component from the component list and click OK. Figure�50 shows the Import window.

	Text

	Adding adapters
	Visual Design Center
	Text
	Adapter properties

	Adding model elements to adapters
	Visual Design Center
	Text
	Model element properties
	Putting relationships and roles into adapters
	Putting attributes into adapters
	Setting attribute properties

	Saving a component specification
	Visual Design Center

	Building the component
	What can you build?
	Starting a build in Visual Design Center
	Starting a build in text

	What is auditing?
	What you get after you build

	5 Accessing ObjectSwitch through PHP
	Overview
	Data types
	Basic types
	Boolean
	Enum
	Object references
	Arrays and sequences
	Unsupported types

	PHP script language
	PHP Syntax
	Using the extension
	Error handling

	PHP4 Extension
	os_connect
	Syntax
	Description
	Warnings
	Error Conditions

	os_create
	Syntax
	Description
	Example
	Error Conditions

	os_delete
	Syntax
	Description
	Warnings
	Example
	Error Conditions

	os_disconnect
	Syntax
	Description
	Warnings
	Example

	os_extent
	Syntax
	Description
	Warnings
	Example
	Error Conditions

	os_get_attr
	Syntax
	Description
	Warnings
	Example
	Error Conditions

	os_invoke
	Syntax
	Description
	Example
	Error Conditions

	os_relate
	Syntax
	Description
	Warnings
	Example
	Error Conditions

	os_role
	Syntax
	Description
	Warnings
	Example
	Error Conditions

	os_set_attr
	Syntax
	Description
	Example
	Using pre-set trigger to set sequence attributes

	Error Conditions

	os_unrelate
	Syntax
	Description
	Warnings
	Example
	Error Conditions

	Web Server—Apache
	Command Line Utility
	Usage
	Example

	Execute PHP in action language
	Transactions
	Web browser or command line transactionality
	Action language callout transactionality

	A PHP example
	The model
	Example scripts
	add_customer.php
	add_order.php
	get_balance.php

	Part Two: ObjectSwitch Reference
	6 Lexical and syntactic fundamentals
	Character set
	Decimal digits
	Graphic characters
	Formatting characters
	Alphabetic characters

	Tokens
	Keywords
	Identifiers
	Literals
	Escape sequences
	Operators
	Other separators

	White space
	Comments
	Preprocessing directives

	7 ObjectSwitch types
	any
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example
	General Information

	array
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example
	General Information

	boolean
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	bounded sequence
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example
	General Information

	bounded string
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	bounded wstring
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	char
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	const
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example
	General Information

	context
	Semantics

	double
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	entity
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example
	General Information

	enum
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example
	General Information

	exception
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example
	General Information

	extern
	Semantics
	Visual Design Center syntax
	Action language syntax
	Example

	fixed
	Semantics

	float
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	interface
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example
	General Information

	long
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	long double
	Semantics

	long long
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	native
	Semantics
	Visual Design Center syntax

	Object
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example
	General Information

	octet
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	pipe
	Semantics

	sequence
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example
	General Information

	short
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	string
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example
	General Information

	struct
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example
	General Information

	typedef
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example
	General Information

	union
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example
	General Information

	unsigned long
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	unsigned long long
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	unsigned short
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	void
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Example

	wchar
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	wstring
	Semantics
	Visual Design Center syntax
	IDLos syntax
	Action language syntax
	Example

	8 IDLos Reference
	Understanding the notation
	Common elements of the grammar
	Files and engines in IDLos
	Files
	Engines

	action
	Syntax
	Description
	Warnings
	Example
	See also

	attribute
	Syntax
	Description
	Warnings
	Example
	See also

	const
	Syntax
	Description
	Warnings
	Example

	enum
	Syntax
	Description
	Warnings
	Example

	entity
	Syntax
	Description
	Warnings
	Example
	See also

	exception
	Syntax
	Description
	Warnings
	Example
	See also

	expose
	Syntax
	Description
	Warnings
	Example
	See also

	interface
	Syntax
	Description
	Warning
	Example
	See also

	key
	Syntax
	Description
	Warnings
	Example
	See also

	local entity
	Syntax
	Description
	Warnings
	Example
	See also

	module
	Syntax
	Descriptions
	Warnings
	Example

	operation
	Syntax
	Description
	Warnings
	Example
	See also

	package
	Syntax
	Description
	Warnings
	Example

	relationship / role
	Syntax
	Description
	Warnings
	Example
	See also

	signal
	Syntax
	Description
	Warnings
	Example
	See also

	stateset
	Syntax
	Description
	Warnings
	Example
	See also

	struct
	Syntax
	Description
	Warnings
	Example

	transition
	Syntax
	Description
	Warnings
	Example
	See also

	trigger
	Syntax
	Description
	Create and delete triggers with inheritance

	Warnings
	Example
	See also

	typedef
	Syntax
	Description
	Warnings
	Example

	Complete IDLos grammar

	9 Action language reference
	About the notation
	Some common elements
	handle
	chainSpec

	break
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	cardinality
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	continue
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	create
	Syntax
	Description
	IDLos Constraints
	Warnings
	Examples
	See Also

	create singleton
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	declare
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	delete
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	empty
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	Exceptions
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	extern
	Syntax
	IDLos Constraints
	Warnings
	Example

	for
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	for ... in
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	if else else if
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	in
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	isnull
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example

	relate
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	return
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	select
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	select...using
	Syntax
	Description
	Warnings
	Examples
	Locking examples

	self
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	spawn
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	Transactions
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	Types
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	unrelate
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	while
	Syntax
	Description
	IDLos Constraints
	Warnings
	Example
	See Also

	Complete action language grammar

	10 Build specification reference
	A simple example
	Understanding the syntax notation
	adapter
	Syntax
	Description
	Example

	component
	Syntax
	Description
	Warnings
	Example

	group
	Syntax
	Description
	Warnings
	Example

	import
	Syntax
	Description
	Example

	Macros
	Syntax
	Description
	Example
	Warnings
	See also

	Properties
	Syntax
	Description
	Example

	source
	Syntax
	Description
	Warnings
	Example

	swbuild
	Syntax
	Description
	Example
	See also

	Complete build grammar
	Complete build specification example

	11 PHP reference
	About the notation
	os_connect
	Error Conditions

	os_create
	Example
	Error Conditions

	os_delete
	os_disconnect
	os_extent
	os_get_attr
	os_invoke
	os_relate
	os_role
	os_set_attr
	Using pre-set trigger to set sequence attributes

	os_unrelate

	Index

