
From OOA to C++: The Missing Link

Stephen J. Mellor

Project Technology, Inc.
10940 Bigge Street

San Leandro, CA 94577-1123
(510)567-0255

Abstract

In 1912, one Charles Dawson discovered a skull fragment that was accepted as evidence
of the long-sought missing link between apes and humans. In 1953, Piltdown Man as the
fossil was known, was shown to be a forgery, a combination of a 600-year-old human
skull and a modern orangutan. Sadly, this tale is redolent of today's methods for making
the transition from object-oriented analysis to code: two related, but fundamentally
disjoint parts are stuck together to make what seems to be a rational progression from one
step to another.

As a solution to this problem, this paper will show how to build a detailed and specific
mapping from an object-oriented analysis into C++ code. The code will be built using a
revolutionary technique called Recursive Design, a part of the Shlaer-Mellor Method. The
approach is based on the construction of an architecture that defines the rules for the
organization of data, control and algorithm, and then a translation, via the architecture,
from the application directly to C++.

One of the many advantages claimed for object-oriented analysis and design is that the
transition between the analysis and design is significantly smoother than for other
methods. There are two main reasons for this claim.

First, in most object-oriented methods, the notation for analysis and design activities is the
same. A single notation helps alleviate the discontinuity between the two activities. On
the other hand, in structured analysis and design there are two notations: the data flow
diagram for analysis and the structure chart for design. There is then a need to say the
same thing twice, once in analysis notation and once in design notation.

The second reason for the claim is that the structure of an object-oriented design and
implementation can be the same as for the analysis. The argument runs as follows. The
object-oriented analyst abstracts objects on the basis of the real-world subject matter
under analysis. The resulting objects tightly connect data and function to act as a unit. As
in the real world, each of the objects is distinct from the other objects and loosely coupled.
The designer then turns the objects in the analysis directly into the objects in the design.
Any change in the real world leads to a corresponding change in the analysis, which, in
turn, leads to a corresponding change in the design. The size and cost of making the
changes are as low as can be, because the analysis models represent the real world exactly,

 Copyright 1994 by Project Technology, Inc. pr.pbS008
All rights reserved

1

as the design models reflect the analysis exactly. Again, this contrasts with the structured,
functional, view in which functions are primary, and changes in data structure wreak
havoc on all the functions that touch that data.

Design by Elaboration

But, it isn't quite that simple. In the degenerate case, as suggested by the above, the
design is exactly the same as the analysis. If this were really true there is no work for the
designer to do! In a real project, we are never that lucky. It is typical to add some detail
to the analysis and, perhaps, to reorganize the models to improve efficiency. Most object-
oriented methods define the design process as a process of refinement, or elaboration, of
the analysis models to yield the design. This step can be very large: perhaps twice the
size of the analysis.

Now there are two ways to interpret this understanding of the design process. One
possibility is that the job of making a design involves real work, and perhaps the transition
between analysis and design is not as smooth as suggested. A second possibility is that the
analyst must take the implementation environment into account during analysis, and
abstract objects on the basis of data structures selected for efficient access, or on the basis
of threads for efficient execution, or on a preconceived aggregation of elements or
primitives into objects. This second option implies that the two difficult jobs of analysis
and design are done together, but on two different models at different levels of detail.

Design by Translation

In contrast, the Shlaer-Mellor Method employs an approach to object-oriented analysis
and design that separates analysis from design on the basis of subject matter, and not on
level of detail. The application-independent subject matter of design is called the software
architecture domain. The software architecture domain proclaims and enforces the
policies regarding data, control and algorithm in the system as a whole, and, when built, it
acts as a design environment into which the application is embedded using a translation
mechanism.

The software architecture domain provides, inter alia, an execution engine for the OOA
formalism, data organization and access facilities, and tasking protocols, both inter- and
intra-processor, as required. These mechanisms stand alone, though they are often driven
by data from the application. In addition, the software architecture domain must define
translation rules for the use of these mechanisms. These translation rules are realized as
archetypes that act as a kind of template on which replacements are made. For example,
we may require that every object in the analysis become a class in the implementation.
This may be written class <object> { ... }. The intent here is that <object> will be
replaced by the name of an object from the application analysis to yield a C++ code
fragment.

 Copyright 1994 by Project Technology, Inc. pr.pbS008
All rights reserved

2

There are many possible architectures, and for a given application some subset of these
architectures may be appropriate. For the purposes of this presentation, we shall describe
at a high level, a simple architecture that has a very direct correspondence to the
formalism of OOA. The architecture can be characterized as a single task, asynchronous,
event-based, object-oriented, direct instance data implementation, internally-managed
class-based linked list with passive iterators architecture. Put into English, the
architecture will yield a single task; it will execute threads asynchronously; it will treat
events as the unit of control; it will make use of encapsulation, inheritance, and
polymorphism; the data for each instance will be stored directly with no modification or
optimization; it will employ linked lists to track multiple instances of a class managing
each list within each class; and it will use passive iterators to execute operations on the
several instances of a class. For comparison, the architecture described in Object
Lifecycles [1], Chapter 9, is a single task, synchronous, event-based, object-oriented,
direct instance data implementation, internally-managed class-based linked list with passive
iterators architecture: just one character different. The first architecture is asynchronous:
it executes each event one at a time, independent of the thread in which the event occurs.
The second architecture is synchronous: it executes a single thread to completion.

We shall describe here only event handling mechanisms and data implementation and
access. While this is incomplete, it is sufficient to illustrate the concepts required to
support a real link between OOA and C++.

Event Handling Mechanisms

The mechanisms of the example architecture include a Finite State Model class, a
Transition class, an Event class, an Active Instance class and some others not
required for this example. The Finite State Model and the Transition classes take
on the responsibility of maintaining, and executing at run time, the state transition tables
that may be associated with each object in the application analysis. The state transition
tables are treated as data on which these classes operate. The Event class is used to
create, store and delete event instances. Each time an action generates an event, it calls
the constructor for the Event class and returns. The main loop of the task then accesses
the next event (perhaps the same one that has just been created, perhaps another) and then
sends the event to the destination class. This is achieved by a class Active Instance,
which is a base class of all the application classes that have state models. It defines a
virtual function, Do Event, that takes on the job of taking an event, finding the current
state of the object instance, and causing a transition to occur using Finite State Model
and Transition. The main loop calls Do Event that is provided by each application class
inheriting from Active Instance.

Data Access

The data organization scheme in this architecture is defined to be direct, so there is one
private data member for each attribute defined on the object information model. Data
access to instances will be implemented as instance-based public member functions, up to

 Copyright 1994 by Project Technology, Inc. pr.pbS008
All rights reserved

3

two for each private data member of the object. There may be one write accessor that
takes a value and stores it, and there may be a read accessor that returns the value of the
specified attribute. Each of these accessor functions is required only if there is at least one
other object that requires it.

Some classes require operations where the handle of the instance is not known, for
example, Find a Dog weighing more than 30 pounds, or Find all Collies. By contrast with the instance-based
queries, we call these operations class-based queries. This architecture uses linked lists to
link together all the instances of a class to enable these class-based operations. In
addition, the head pointer to the first instance is stored as class data within the class, and
all other list management is handled within the class. The same scheme is used for all
classes that have class-based queries acting on them.

A passive iterator is a single class-based function that finds an instance, or a set of
instances, according to some specified criteria. The two example class-based operations
above, if implemented as functions in the Dog class, are passive iterators. The client of the
iterator simply calls the function; the iterator contains a loop that iterates through all the
instances. (A passive iterator contrasts with an active iterator, which is a set of functions,
say reset and next, that iterate through each instance of the set one by one. The control
of the iteration is in the client, and the iterator maintains an implied cursor inside the
server class.) All class-based queries found in the OOA of the application can be
implemented using the passive iterator. There are some important details to manage here,
such as how to return a set of instances, and how to handle nested queries such as Find all the

Dogs weighing more than 30 pounds whose owners live in Berkeley, but schemes can be found to manage these in
a regular manner.

All classes in the system can use the same approach to data access. Each application
object that has only instance-based queries can be implemented directly with no link to
other instances of the class. Each application object that has class-based queries must link
the instances together. Each class-based operation is implemented as a passive iterator.
The underlying logic required to build each passive iterator is the same in all cases.

Combinations

So far, we have shown that there is a way to send and receive events, that data can be
implemented directly, and that it can be accessed. Real implementations combine these
concepts in several ways.

In this architecture, a passive object is an object that does not do anything of its own
volition, but has data that can be accessed by other objects. The only logic in a passive
object is data access code. A passive object may have instance-based operations, or it may
have class-based operations, or both. There is a pattern, an archetype, that can be laid out
for each passive object.

 Copyright 1994 by Project Technology, Inc. pr.pbS008
All rights reserved

4

An active object is an object that has a state machine associated with each instance. The
mechanisms for the state machine traversal have already been tested. There is a pattern,
an archetype, that can be laid out for each active object.

An assigner object is an object that has a single state machine associated with the set of
instances. (This type of object is used in OOA to manage contention.) Each such assigner
object inherits from Active Instance to provide for the ability to traverse a state
machine. Some objects may have two state models, one for a single instance, and one for
the set of all instances. The same class inherits from Active Instance twice. There is a
pattern, an archetype, that can be laid out for each assigner object.

The C++ Code

The mechanisms are written in C++.

The archetypes for passive, active, and assigner objects are written in C++ extended to
allow for replacement of elements from the application so that class <object> { .. }
will yield class oven{ ..}, class light { .. }, class tube { .. } etc.,
assuming that oven, light and tube are objects in the analysis. The intent here is that
<object> will be replaced by the name of an object from the application analysis to
generate a C++ code fragment.

The combination of the mechanisms and the archetypes and replacements from the
application produce the final system.

Where's the Design?

The example architecture described above is a particularly direct translation of the analysis
into the design. There is sufficient detail in the analysis and the architecture to yield a
complete system.

However, the architecture need not be direct at all. We have defined architectures that
vary all of the adjectives used to describe the example architecture, including periodic
architectures used in certain kinds of real-time systems, multitasking architectures, and
thread-based architectures. The task of the designer is to define the architecture and the
translation from the analysis to the implementation via that architecture. This separation
of concerns leaves analysis and design as distinct concepts, solving different problems, but
with a clear, defined, link between the two activities.

[1] Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in States,
1992 Prentice Hall, Englewood Cliffs, NJ.

 Copyright 1994 by Project Technology, Inc. pr.pbS008
All rights reserved

5

