
A Comparison of OOA and OMT

Sally Shlaer

Project Technology, Inc.
10940 Bigge Street

San Leandro, California 94577-1123
510 567-0255

http://www.projtech.com

7 August 1992

The purpose of this paper is to compare Shlaer-Mellor's OOA/RD with the OMT method of Rumbaugh et
al. The comparison is based on the published material only [see references at the end of the paper] and
emphasizes the work products defined by these methods, the organization and relationships between the
models, and the goals of each method.

1. Goals of the Analysis Methods

While both methods are aimed (at the analysis stage) at capturing information about a problem domain,
the two groups (Shlaer-Mellor and Rumbaugh et al.) have taken quite different views as to what to value
in the analysis models. These different views of analysis derive primarily from fundamentally different
approaches to design (as discussed further in Section 9).

OMT. In general terms, OMT allows the analyst a lot of flexibility as to what information to capture in
the models and how to represent that information. In OMT, readability of the models is highly valued,
and the analyst is encouraged to make decisions as to what to represent and how to represent it so as to
achieve maximum readability. In OMT, it is perfectly all right to omit detailed information if that will
increase readability.

This view is consistent with OMT's approach to design, which consists of the successive introduction of
additional detailed information on a class-by-class basis.

OOA. By contrast, OOA is a much stricter method. The analyst has relatively little choice in how to
represent aspects of the real world/problem information; many rules and guidelines are provided. There
are strict rules for completeness and consistency. The focus on completeness and consistency is required
to support Recursive Design (RD): RD is based on the idea of literal transformation of the analysis
models into design and implementation.

In OOA, readability is addressed through simplicity of the notations and organization of the work
products. The analyst can enhance readability by good layout of the graphical models, but not by
omission of information.

- 1 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

Goals of the Analysis Methods
OOA/RD OMT

Capture of problem information Capture all information
explicitly

Capture as much information as
analyst finds appropriate

Readability Notations designed for
readability.

Analyst controls readability by
omitting information

Consistency Many rules given by method A few rules given by method
Completeness Defined by method Defined by analyst
Use of analysis models in
design

Models will be mathematically
transformed into design

Models will be elaborated by
addition of detail to achieve
design

2. Large Scale Partitioning

OOA. OOA requires that the analyst partition the system into separate subject matters known as
domains. The domains are depicted on a Domain Chart. The domains are analyzed separately, and are
connected together through traceable interfaces during design and implementation.

OOA permits a large domain to be broken down into pieces (called subsystems) for the purpose of
managing the analysis. A special work product is defined to aid in scheduling, tracking, and estimating
the work.

OMT. The OMT book refers to a concept of domain, but does not make use of the concept in the
method. Information regarding different subject matters is added class by class during design.

OMT has a concept of module -- roughly equivalent to OOA/RD's subsystem. The module concept is not
reflected in the OMT work products. There are no work products defined to aid in project management.

The following table shows concepts related to large scale partitioning of a system, and where those
concepts appear in work products defined by each method.

Where large scale partitioning concepts are represented
Concept OOA/RD OMT
Domains Domain chart

Project Matrix
Concept is not used

Portion of a domain (subsystem
in OOA; module in OMT)

Project Matrix
Subsystem level models (SRM,
SCM, SAM)

Concept applies to application
domain only and does not
appear on any workproducts

Relationships between objects
in different subsystems

Subsystem Relationship Model
(SRM)

Not shown on any model

Asynchronous communication
between subsystems

Subsystem Communication
Model (SCM)

Not shown on any model

Synchronous communication
between subsystems

Subsystem Access Model
(SAM)

Not shown on any model

- 2 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

3. Analysis Concepts and Workproducts

The two methods have nearly equivalent textual work products: Documents describing the meaning of
objects, attributes, and relationships. Both methods have process descriptions.

There are many more differences in the graphical and tabular work products. Both methods prescribe
three fundamental analysis models (the first three listed in the table below), and a model depicting the
thread of control that devolves from the arrival of an external event.

OOA also prescribes a number of derived models: models that can be mechanically generated from the
fundamental models. The derived models help the analyst understand the operation of the subsystem or
domain as a whole -- an issue not addressed by OMT.

Major Analysis Concepts and Work Products
What is represented OOA/RD OMT

Conceptual entities and their
interrelationships

Information Model Object Model

Lifecycles of objects and
relationships

State Models State Models (not for
relationships)

Processing ADFDs DFD
Completeness of state model State Transition Table (partially

derived)
no corresponding work product

Senders and receivers of events Event List (derived) no corresponding work product
Invocation of processes (who
invokes whom)

State Process Table (derived) no corresponding work product

Asynchronous communication
between objects

Object Communication Model
(derived)

no corresponding work product

Synchronous communication
between objects

Object Access Model (derived) no corresponding work product

Response to an external event Thread of control chart Event trace

- 3 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

4. Information Model vs. Object Model

OOA. The Information Model of OOA depicts objects, attributes, and relationships. The model is
constructed from a small set of orthogonal constructs. As a result, the analyst has relatively few concepts
to learn. Many rules and guidelines are provided so that analysts working together generally find it easy
to agree on a common solution.

OMT. The Object Model contains the same basic information as the OOA IM1. The flavor of the model
is, however, somewhat different: The analyst is provided with a large number of additional, non-
orthogonal concepts and notations. The analyst has many more concepts to learn, and more choice as to
how to express a fact about the problem. Few guidelines are provided as to which construct to use under
what circumstances.

Identifiers and referential attributes. The most important difference between the two models has to do
with identifiers and referential attributes. OMT takes the perspective that the existence of an instance
(with a handle of some sort) is sufficient to identify it. Because OMT does not, in general, provide for
identifiers, it cannot provide referential attributes.

OOA takes the perspective that referential attributes provide linkage information inherent in the problem
domain, so that information must be captured at analysis time. OMT considers that this kind of linkage
information is no different from linkage information inserted for implementation reasons (links between
instances of the same object supplied to allow for searching), and so defers this issue to design.

When a set of relationships forms a loop on the Information Model (or Object Model), there may or may
not be constraints (dependencies) on how instances are associated around the loop. OOA requires that all
loops be analyzed and that the relationships making up the loop be formalized so as to express
application constraints that must be carried forward into the design. Since OMT does not, in general, use
referential attributes, it cannot be used to investigate dependencies in loops.

Information Model/Object Model Concepts
Concept OOA OMT
Number of concepts Few, orthogonal Many, not orthogonal
Theory of data Relational Incomplete relational (no

referential attributes)
Identifiers Required for all objects Omitted (unless "naturally

occurring")
Referential attributes Required Used on occasion (no guidance

as to when)
Formalization of relationships All relationships must be

formalized
Relationships can be formalized
if (1) there are naturally
occurring identifiers and (2) the
analyst so chooses

Loops of dependent
relationships

All loops must be analyzed for
dependency

No concept of dependent loops

Methods Appear on design models only
(see Section 10)

Shown on Object Model

1The analyst can supplement the basic information on the OMT Object Model by adding text to indicate
instance methods, class methods, signatures of the methods, attribute types, etc. This information is
provided in associated work products in OOA, and is brought together in the Class Diagram (see section
10).

- 4 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

5. Instance Information

OMT provides for graphical diagrams representing specified instances of the analysis objects.
Relationships between individual instances are represented by connectors on the diagrams. These
diagrams are rarely used because they get big very quickly: If you have 6 objects with 10 instances each,
you get a diagram with 60 boxes on it.

OOA represents the same information as filled out tables, as in a relational database. Here relationships
between instances are shown through values of the referential attributes. OOA does not use a
diagrammatic form, but captures the instance level information in a database so that it can be fed directly
into the implementation. Simple database reports are used to provide instance level information in a
compact form.

Instance Level Information
OOA OMT

instance row in a table icon
association between instances value of referential attributes graphical connector
where recorded in database graphical model
when/how used feed data values into

implementation
rarely used

- 5 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

6. Comparison of State Models

OOA. In OOA, state models are used to formalize the lifecycle of each object and relationship on the
Information model. The state models are planar (non-hierarchical), so the concept of state is a simple,
single-valued one. An event causes a transition within this single-leveled diagram.

An action is associated with each state, and is executed on entry to the state. All rules regarding whether
or not a transition takes place are expressed by the structure of the state model itself -- there are no extra
conditions attached to the transition.

In OOA, a special Assigner state model is used to manage relationships that express competition or
contention.

A number of rules and guidelines are provided to tell the analyst how to build the state models. A tabular
form (the State Transition Table) is provided to allow analysis of completeness and correctness of the
state model.

OMT. In OMT, state models are used to formalize the lifecycles of each object (only). State models are
hierarchical, so the concept of state is a combinatorial one: An instance can be in one state at one level,
another state on another level, and yet another state on yet another level. An event can cause transition in
a single level or across levels. The analyst can attach conditions to a transition so that when an instance
receives an event, the effect of that event will be determined not just by the combinatorial state of the
instance, but also by any conditions associated with transitions.

At the analyst's choice, an action can be associated with entry to a state, exit from a state, or with a
transition. In addition, an on-going activity can be conducted throughout the time that an instance
remains in a state. These options provide a lot of choice for the analyst, but little guidance is provided as
to which option to choose.

State Models
OOA OMT

lifecycle of an object state model state model
lifecycle of a relationship state model no such concept
competitive relationship Assigner state model no such concept
form flat hierarchical
state single-valued combinatorial value
action on entry to a state on entry to a state, on exit from

a state, on a transition. during a
state (analyst can specify any or
all)

transition depends on state of instance depends on state of instance and
on all transition conditions

event causes at most one transition
within a level

causes transitions across
multiple levels

event data must carry identifier of target
instance

carries no identifiers

- 6 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

7. Comparison of Process Models

OMT. Multi-layered process models are formed by functional decomposition. No guidelines are
provided for partitioning the processes. It is asserted that each process on every level becomes a method
of some object on the Object Model, but no rules are provided for making that connection. There is also
no explicit association between the processes on the process models and the state models, so it is difficult
to evaluate consistency between these two views of the problem.

Data stores are developed to suit the analysts needs: They can correspond to objects, to single attributes
of multiple instances of the same object, or combinations of attributes of multiple objects.

OOA. An Action Data Flow diagram (ADFD) is constructed for each action in each state model.
Because the system has already been partitioned into objects and then into actions for the states of these
objects, the analyst proceeds directly to the elementary processes at the bottom of the system. Strict
guidelines are given for factoring the action into processes, and for assigning the processes to objects on
the information model.

Data stores correspond to objects on the IM.

Process Models
OOA OMT

Form One flat ADFD per action Multi-level DFD applies to
whole system

Level of processes to develop Elementary processes only All levels of processes
Guidelines for forming
processes

fully defined none

Guidelines for associating
processes with objects

fully defined none

Criteria for reuse of processes fully defined none
Work product to manage reuse State Process Table none
Association between Process
Model and State Model

One flat ADFD per action no explicit association

Data stores Correspond to objects or to
Current Time

Correspond to objects, a subset
of attributes of an object, a
collection of attributes of many
objects, an external entity
(actor) -- at analysts choice

- 7 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

8. Execution of the Analysis Models

OOA. The analysis models of OOA are executable: When combined with instance information, they
contain all information required to simulate the functional behavior of the finished system.

OMT. The state models of OMT are based on Harel's Statecharts. Execution rules have been defined for
State Charts, but since OMT does not define certain information, the models are not executable, either in
the analysis or design rendition. The missing information is as follows:

• Execution rules relating events and processes are not defined
• Execution rules for the process models are undefined
• There are no identifiers by which one can determine which instance must respond to an event, or

which instance is to be acted upon by a process.
• There are no referential attributes to allow you to trace through to instances of other objects to

complete the processing

Factors affecting Executability of Analysis Models
Factor OOA OMT
completeness of model complete referential attributes missing,

identifiers missing,
may be incomplete at analysts
discretion

execution rules for state models completely stated complete (stated in Harel's
papers)

execution rules for process
models

completely stated not stated

execution rules relating events
and processes

completely stated none

- 8 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

9. Viewpoints on Design and Implementation

OMT. OMT starts with the assumption that an object-oriented design is to be produced. The design is
developed from the analysis models by successively adding information to the classes (objects on the
Object Model) one by one, and by adding additional classes as the designer sees the need.

Because OMT is intended to support only an object-oriented design, no new work products are defined
for design: The analysis notation (and only the analysis notation) continues to be used for design. When
the designer is satisfied that a complete description of the design has been obtained, the system is
implemented by hand-coding.

The advantage of this perspective is that there is only one notational system to learn. The primary
disadvantages are that the notation supports only OOD, and that it does not support certain critical design
concepts (multitasking, for example). In addition, the approach encourages handcrafting of classes (more
of a disadvantage for large projects than for small ones).

OOA/RD. OOA/RD takes the perspective that an object-oriented design may or may not be appropriate
for a given problem -- and the analyst/designer may not be able to determine that until the analysis is
quite far along. Hence this method focuses on transforming the analysis models into a design of the users
selection. The analysis models are not modified during this process; as a result, a designer can
experiment with multiple transformations as required to achieve a design with adequate throughput,
response times, etc. An important aspect of the transformation is code generation: the transformation
can be developed so that the code is generated at the same time that the design is generated.

One advantage of this approach is that you are not limited to an object-oriented design. To achieve
completeness and clarity in expressing the design, the designer is encouraged to use a design notation that
supports the conceptual entities of the selected design.

Viewpoint on Design
OOA/RD OMT

object-oriented designs supported supported
other design schemes supported not supported
how design is achieved literal transformation of analysis

models
addition of detail to analysis
models, class by class

how implementation is achieved most code generated by
transformation of analysis
models

intended for hand-coding

design notation Not limited to a single notation
-- recommends use of a notation
that expresses conceptual
entities of the selected design

Limited to OOD

- 9 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

10. Building an Object-Oriented Design

The process by which an object oriented design is produced in OMT was described in the previous
section. The notation used is the same as the analysis notation.

OOA/RD produces an object-oriented design by transformation. One such transformation scheme has
been published in [2]; others are available in [3]. An object-oriented design notation (OODLE) is
provided to express the design.

Building an Object-Oriented Design
What is represented OOA/RD OMT

external specification of a class Class Diagram Object Model
internal structure of a class Class Structure Chart not shown on any model
invocations between classes Dependency Diagram not shown on any model
inheritance relationships
between classes

Inheritance Diagram Object Model

References

[1] Object-Oriented Modeling and Design, James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen, Prentice Hall, 1990.

[2] Object Lifecycles: Modeling the World in States, Sally Shlaer and Stephen J. Mellor, , Prentice Hall,
1991.

[3] Real Time Recursive Design (training course), Project Technology, 1990.

- 10 -  Copyright 1992 by Project Technology, Inc.
All rights reserved.

