
Platform Independent
Action Language

Version 2.2

December 31, 2004

PathMATE™ Series

Pathfinder Solutions LLC
33 Commercial Drive, Suite

Foxboro, MA 02035 USA

www.PathfinderMDA.com

508-543-7222

Copyright © 2004 by Pathfinder Solutions

- ii -

Table of Contents

Preface . iii

PathMATE Overview . v

1. Introduction . 1

2. Action Overview . 2
What Are Actions? . 2
What Can Actions Do? . 2
What Makes Up an Action? . 2
How are Actions Used? . 3

3. Action Semantics . 4
Data Context . 4
Statements . 5

4. Examples . 16

A. Action Language Quick Reference . 19

Index . 21

Preface

Audience

Platform Independent Action Language is for software engineers who
want to learn how to design embedded systems with PathMATE. It’s
helpful but not essential to have some familiarity with IBM’s Rational
Rose modeler.

Related Documents

These PathMATE documents are available at www.PathfinderMDA.com,
or from your Pathfinder account manager:

• PathMATE Installation Guide

• Accelerating Embedded Software Development with a Model
Driven Architecture (white paper)

• PathMATE: Model Automation and Transformation Environment for
Embedded Systems (online brochure)

Conventions

The Quick Start Guide uses these conventions:

• Bold is for clickable buttons and menu selections.

• Italics is for screen text, path and file names, and other text that
needs special emphasis.

• Courier denotes code, or text in a log or a batch file.

• A Note contains important information, or a tip that saves you
time.

• The scissors icon marks text that you must copy from this
document and paste elsewhere.

What You’ll Need

To complete the steps in this guide, you’ll need the following software
on your computer:

• Microsoft XP Professional Edition

• Rational Rose

• PathMATE software development toolkit

• Microsoft Visual C++ 6.0 or 7.0

• Plain text editor
- iii -

Preface
How to Use this Guide

If you are not already familiar with the PathMATE toolset, read the
overview in Section 1. If you have not installed the PathMATE toolset on
your computer, turn to Section 2 to download the software from
www.PathfinderMDA.com, then follow the installation instructions in
Appendix A. After installation, carefully follow the steps in Section 3 to
learn how PathMATE works.
- iv -

PathMATE Overview

This overview introduces Model Driven Architecture (MDA) and the
PathMATE™ tools that make MDA work. MDA and PathMATE move you
from writing and debugging code to developing and testing the logic of
a high performance system. Over years of rigorous refinement in
several industries, PathMATE tools have proven their value in rapid and
effective software systems development.

PathMATE Toolset
The PathMATE Model Automation and Transformation Environment
includes all the tools required to transform your MDA models into
high-performance systems. See the PathMATE workflow in the figure
below.

PathMATE Workflow
- v -

PathMATE Overview
The three parts of the PathMATE toolset cooperate to turn your models
into executable systems:

• Transformation Maps – Generate C, C++, or Java software with
off-the-shelf Transformation Maps, or create custom maps to drive
output for other languages or specific platforms.

• Transformation Engine – The Engine transforms
platform-independent models into working, embedded software
applications.

• Spotlight – Verify and debug your application logic with Spotlight,
the most advanced model testing environment available.

No other MDA transformation environment offers a more open or
configurable set of development tools, designed to meet the
requirements of systems engineers.

How PathMATE Works
Use Model Driven Architecture to build complex embedded systems
that meet rigorous standards for speed and reliability. MDA works
because it separates what the system does from its deployment on a
particular platform. PathMATE adds these advantages:

• Greatest architectural control – A highly configurable
Transformation Engine enables you to optimize output for
resource-constrained platforms.

• Clean separation of model and code – Conforming to the MDA
paradigm, PathMATE models contain no implementation code.
That gives you fast and flexible deployment and migration
capabilities.

• Configurable, target-based model execution and testing –
Preemptively eliminate platform-specific bugs, minimize quality
assurance resources, and accelerate development.

• Lowest cost of ownership – Integrate PathMATE with your existing
UML editor. Build on your previous investment in training and
software.

• Speed – Even large transformations take just seconds with
PathMATE. That enables highly iterative model development, and
rapid transformation and test cycles.

Try the demonstration software available at www.PathfinderMDA.com
to get started quickly and easily.
- vi -

http://www.PathfinderMDA.com

- 1 -

1. Introduction

This document provides a summary of the Platform Independent Action
Language (PAL) as applied in Model Driven Architecture using the
Unified Modeling Language. PAL is a platform independent form of
behavioral expression: a programming language for MDA Platform
Independent Models (PIMs) using the UML Standard Action Semantics
standardized by the Object Management Group. Please see “UML Action
Semantics Revised Final Submission,” available from www.omg.org.
Through its focus on platform independent model constructs, action
language:

• Is concise and easy to learn, with a familiar, C++-like syntax.

• Provides the most convenient form of expression for PIM action
procedures.

• Offers strategic agility through implementation platform
independence and implementation language independence.

• Effectively enforces PIM separation from implementation code.

• Enables the highest degree of freedom to apply varying and
project-specific implementation architecture and optimizations
through transformation.

It is assumed that the reader is somewhat familiar with MDA/UML
modeling conventions as specified in the Model Based Software
Engineering (MBSE) approach for modeling with the UML, as introduced
in:

Model Based Software Engineering: Rigorous Software
Development with Domain Modeling, Pathfinder Solutions. (This
paper is available from www.pathfindermda.com.)

The Action Language Quick Reference syntax summary is provided for
your convenience on page 20. Print it separately and keep it handy.

http://www.omg.org
http:/

2. Action Overview

What Are Actions?
Actions are procedures in your UML models. More specifically, they
enact the bodies of services and states specified in an analyzed
domain. In addition, actions are provided to perform initialization at the
system and domain levels. Briefly, then, actions define and implement:

• Domain services

• Class services

• State actions

• System and domain initialization

Domain and class services run when they are invoked, and state
actions run when the instance enters the state.

What Can Actions Do?
Service, state, and domain initialization actions execute within the
scope of their owning domain. These actions may access data atoms
from various sources:

• Service parameters

• Event parameters

• Local variables

• Class attributes

Actions can read and write these data atoms, create class instances,
generate events, invoke services, create and invoke service handles,
and link, unlink and navigate associations. Actions associated with a
domain can access any of the classes in the domain. To reach outside
the domain, the action must call a service of the domain. An action in
one domain cannot access classes from another domain.

What Makes Up an Action?
An action is very similar in execution semantics to a function from a
procedural programming language. It is made up of blocks of
statements. The action itself has a root block of statements, and certain
statements have blocks nested within them.

Each statement is made up of expressions and keywords. Expressions
are accessors to analysis elements, local variables, compound
expressions (with operators), or literals.
- 2 -

Action Overview
How are Actions Used?
Actions, along with all other Analysis elements in your system, are fed
into a translation step where they are mapped to executable
implementation code.

Figure 2-1. Model Transformation

A transformation rule maps each specific Action Language statement
and expression type to the implementation language. Some statements
may have more than one possible mapping, allowing for optimization.
The implementation of an action is translated from the Action
Language.
- 3 -

3. Action Semantics

Action Language (AL) is a programming language with specific
primitives to support the manipulation of Analysis elements. To
describe Action Language syntax, this document uses the following
conventions:

• [optional item]{either | or} 0 or more iterations, …

• All bolded characters (such as {|}, []) indicate actual use of these
characters in the action language.

• Italic items are substitution items or annotations.

• All action language keywords are case sensitive, and are shown in
BOLD.

• // In action language, comments are as in C++.

Data Context
Each action has a varying set of data atoms that it reads and/or writes.

Explicit

Each domain or class service may have parameters available. Services
may also have a return value. State actions have event parameters. All
actions may declare and use local variables.

Implicit

Instance-based class services, or instance-based state actions have the
“this” variable available as a Reference to the target instance. Literals
may be used. FIND accessors over entire instance populations (FIND
CLASS) imply the use of a domain-global collection of instance
references.

Data Types

There is a fixed set of data atoms in Analysis: attribute, service
parameter, event parameter, and action local variable. Each atom is of a
specific data type. There is a core set of basic, built-in data types:

• Boolean: TRUE or FALSE

• Character: an ASCII character

• Integer: whole number (width is design dependent)

• Handle: generic reference (similar to void* in C)

• Real: floating point number (size is design dependent)

• String: a variable length ASCII string

• GenericValue: stores a String, Real, Handle, or Integer (similar to
C union)
- 4 -

Action Semantics
In addition there are advanced data types:

• Ref<class>: a reference to an instance of <class>, commonly
used as a type for a local variable used to iterate over the results
of a Find or Navigate

• Group<base type>: an ordered set of <base type> items,
commonly used as a type for a service parameter to support
passing sets of data items between domains

• GroupIter<base type>: an iterator over an ordered set of <base
type> items, used to iterate over items in a group.

[Boolean | Character | String | Real | Integer |
GenericValue | Handle | Group<base_type> |
GroupIter<base_type> | Ref<class_name> |
ServiceHandle]

The analyst can define new types:

• Enumerations

• Aliases base types (similar to typedef in C)

Statements
Statements combine expressions to accomplish specific tasks within
actions.

Data Manipulation

Assignment - writes the value of the expression on the right of the
equal side into the data atom on the left:

{ AttributeAccessor | Parameter | LocalVariable |
ServiceHandleParameter } = Expression ;

Local Variable Declaration – declares a local variable (scope limited
to declaring action):

DataType variable_name { = initial_value };
Constant Declaration – in the system or domain initialization action
declare a constant. Constants defined in the system initialization action
are accessible to all domains. Constants defined in the domain
initialization action are accessible only to the domain where they are
defined.

CONST DataType variable_name = initial_value;
External Constant Declaration – in the system or domain
initialization action declare a constant that is defined in realized code.
The action language parser will recognize an external constant but will
not create a definition for it. External constants defined in the system
initialization action are accessible to all domains. External constants
defined in the domain initialization action are accessible only to the
domain where they are defined.

EXTERN CONST DataType variable_name;
- 5 -

Action Semantics
NOTE
Some designs such as the Pathfinder C++ Design components
support an IncludeFile property that contains the name of a
realized include file containing the definition of the external
type.

Data Atom Ordering - sorts the specified list of data atoms based on
their value. “/” indicates ascending order (default), or “\” indicates
descending order:

ORDER GROUP [{ / | \ }] group;
Instance List Ordering – These statements sort the specified class
instance population based on the specified attribute(s). The attributes
can be preceded by “/” to indicate ascending order (default), or “\” to
indicate descending order. The most significant key is specified first:

Class Population Ordering – sorts the specified class instance
population:

ORDER CLASS class_name BY ([{ / | \ }]
attribute_name, …);

Association Population Ordering – sorts the associated instance
population (Navigation is an association navigation expression):

ORDER Navigation BY ([{ / | \ }] attribute_name,
…);

Data ordering is not maintained when new elements are added to the
group or instance population. For example, if an ORDER statement was
executed and a subsequent action created a new instance of the class,
the sort order specified by the ORDER statement would not be
maintained. If you want a sort order to be maintained, use the Sort
design properties.
- 6 -

Action Semantics
Execution Flow Control

Action Language contains conditional and iterative execution flow
control constructs.

Statement Block – A statement block is a sequence of statements.

Instance List Iteration – These statements declare a cursor variable,
and then iterate over each class instance in the specified population.
Each instance is assigned to the cursor variable, and the nested
statement block is executed. An optional WHERE clause filters the
instance set to only those that match the specified Boolean expression
comparing attributes of the target class with any data atoms available
in the action context.

Class Population Iteration - iterate over the entire class population:

FOREACH cursor_variable = CLASS class name [WHERE
(Expression)] { StatementBlock }

Association Population Iteration - iterate over the associated
instance population (Navigation is an association navigation
expression):

FOREACH cursor_variable = Navigation [WHERE
(Expression)] { StatementBlock }

Conditional – execute the first statement block if the Boolean
Expression is TRUE, otherwise execute the optional else statement
block.

IF (Boolean Expression) { StatementBlock }
[ELSE IF (Boolean Expression) {StatementBlock}]

[ELSE { StatementBlock }]
Iterative – evaluate the specified Boolean expression – if it is TRUE,
execute the statement block. Repeat until the expression is FALSE, or a
BREAK statement is encountered.

WHILE (Expression) { StatementBlock }
Break – interrupt execution of the enclosing iterative control structure
(WHILE or FOREACH). Skip all remaining statements in the iterative
statement block, and resume execution after the iterative statement
block:

BREAK;
Continue - interrupt execution of only this iteration of the enclosing
iterative control structure (WHILE or FOREACH). Skip all remaining
statements in the iterative statement block, and resume execution at
the top of the iterative statement block:

CONTINUE;
- 7 -

Action Semantics
Function Ins and Outs

Invocation – call the specified service or built-in method (with no
return value):

{ Service Accessor | BuiltIn method};
Service Value Return – return from this service with the specified
return value:

RETURN [Expression];

Expressions

An expression is something that provides a data value, receives a data
value (when it is written to), and/or performs some action. Expressions
are used to create, store and access data values and Analysis elements.
Expressions are also used to invoke services and access built-in
capabilities.

Variables

Local Variable Reference – used after its declaration:

variable_name

Parameter – service parameters can be referenced in the service
action; event parameters can be referenced in the state action:

parameter_name

Constants

Constant Reference – system or domain scoped constants defined in
the initialization action may be used within the scope of the constant:

constant_name

Accessors

Accessors are expressions that read or write specific Analysis data
atoms.

Class and Attribute Accessors

Attribute – read or write a class attribute value. The instance_ref can
be a local variable, a service or event parameter, or the “this” reference
in instance-based class services or states:

instance_ref . attribute_name
Class Instance Create – create an instance of the specified class and
return a reference to it. A leaf subtype must be specified (no
supertypes). Attribute values must be specified if there is no default. An
initial state name must be specified if there is no default (a default
state is specified by the initial state bullet on a state model):

CREATE class_name ([attribute_name = Expression,
…]) [IN initial_state]
- 8 -

Action Semantics
Class Instance Delete – unlink the specified instance from all
associations it participates in, and remove it:

DELETE instance_ref

NOTE
The design ensures that an instance is unlinked from all its
associations before deletion.

Class-Based Find – Find the first (default) or last instance of the
specified class. An optional WHERE clause filters the instance set to
only those that match the specified Boolean expression comparing
attributes of the target class with any data atoms available in the action
context. If no matching instance is found, NULL is returned:

FIND [{ FIRST | LAST }] CLASS class_name [WHERE
(Expression)]

Navigation-Based Find – Find the first (default) or last instance
through the specified chain of association navigations. An optional
WHERE clause filters the instance set to only those that match the
specified Boolean expression comparing attributes of the target class
with any data atoms available in the action context. If no matching
instance is found, NULL is returned:

FIND [{ FIRST | LAST }] Navigation [WHERE
(Expression)]

WHERE expressions are Boolean expressions that can include any data
atom available from the action context: local variables, constants, and
parameters. It also includes attributes of the target instance. However
a WHERE expression cannot perform other instance-based accesses of
the target instance, including instance-based operation invocations, or
association accesses (navigation).

Relationship Accessors

Association Link – establish a connection between the specified class
instances. If the association is reflexive (the same class at both ends),
then at least one role phrase must be specified. If the association has
an associated class, an associated class instance reference must be
provided.

LINK [@role_phrase1] instance1_ref
A<number> [@role_phrase2] instance2_ref
[ASSOCIATIVE assoc_ref]
- 9 -

Action Semantics
Unlink - break the connection between the specified class instances. .
If the association is reflexive (the same class at both ends), then at
least one role phrase must be specified. If the association has an
associated class instance connected, this instance is deleted
automatically by unlink. Do not delete the associated class instance
prior to or after the unlink.

UNLINK [@role_phrase1] instance1_ref
Anumber [@role_phrase2] instance2_ref

Navigation Expressions – There are used to traverse associations
and inheritance relationships (downward only). A Navigation Expression
may return no instances, a single instance, or a collection of instances
– all depending on the multiplicity of the associations in the Navigation
Expression. A Navigation Expression may contain multiple individual
navigations chained together with the across operator “->”. A
Navigation Expression cannot be used as a class instance reference
expression itself – it is only used in the context of a FIND accessor,
FOREACH statement, or ORDER statement.

SubSuper Navigation – “downcast” to get from a supertype to a
specific subtype. Returns NULL if the actual subtype encountered at
run-time subtype does not match specified subtype. Upcasting is
performed automatically. A subtype can be used anywhere a supertype
is expected.

supertype_reference
->Srelationship_number->subclass_name

Association Binary Navigation – Navigate from the start_ref class
instance across the specified association to the instance(s) at the other
end:

[@role_phrase1] start_ref->A<number> [
->@role_phrase2 dest_class_name]

Association Navigation to Associated Class – Navigate to the
instance of the class associated with a link between class instances
start_ref_1 and start_ref_2:

[@role_phrase1] start_ref_1 AND [@role_phrase2
] start_ref_2 ->A<number>

Event

Generate – create an instance of the specified event, and queue it for
dispatch to the specified instance. No destination is provided for create
events. Destination is optional for self-directed events sent to self from
an instance state. All event parameters must have a value provided. If
a delay is specified, the event will be held in the delayed event
mechanism for a minimum of the period specified, and then it will be
queued for dispatch. The units of the delay are Design specific:

GENERATE event_name (Expression, …) [AFTER
(delay)] [TO (destination_ref)]
- 10 -

Action Semantics
Cancel – If an instance of this event destined to the specified
destination is still held in the delayed event mechanism, then remove it
before transmission. If more than one instance of this event is
outstanding against the specified destination, delete the one with the
shortest delay remaining. No indication is returned if this operation
actually found an instance of the event.

CANCEL event_name [TO (destination_ref)]

ReadTime – If an instance of this event destined to the specified
destination is still held in the delayed event mechanism, return the
amount of time remaining until it will be queued (the units are Design
specific). Returns 0 if a matching event instance is not found.

TIME UNTIL event_name [TO (destination_ref)]

Service

Domain Service Invocation – may have a return value:

domain_prefix:service_name(Expression, …)

Class Service Invocation (class based) – may have a return value:

class_prefix:service_name(Expression, …)

Class Service Invocation (instance based) – may have a return
value:

instance_ref . [class _prefix:
]service_name(Expression, …)

NOTE
Always omit the class prefix when calling a polymorphic service
on a supertype instance.

ServiceHandle

Create ServiceHandle – create a ServiceHandle to a specific service
(only valid to services in context domain). Input parameter values must
be specified if there is no default:

CREATE ServiceHandle ([parameter_name =
Expression, …]) TO { domain_prefix |
class_prefix }:service_name

Invoke ServiceHandle – optionally specify input parameter values:

CALL service_handle ([parameter_name =
Expression, …])

ServiceHandle Parameter – a ServiceHandle parameter can be
directly referenced for read or write using the parameter name as an
index (error behavior is Design-specific):

service_handle [parameter_name]
- 11 -

Action Semantics
Built-In Methods

Invocation – built-in methods are invoked as methods of their
operand:

Operand.method_name(parameters…)

Group built-ins - Group data types have the following support
methods:

Add an item in front of the first item in the group:

group_expression.addFront(item)

Add an item after the last item in the group:

group_expression.addBack(item)

Add an item after the current position (indicated by the iterator):

group_expression.insert(iter, item)

Return the first item in the group:

group_expression.front()

Return the first item in the group:

group_expression.back()

Remove the first item with the specified value from the group:

group_expression.remove(item)

Delete the item at the iterator location from the group:

group_expression.erase(iter)

Remove all items from the group:

group_expression.removeAll()

Return an integer specifying the number of items in the group:

group_expression.size()

Return the specified item in the group (0-based index; error behavior is
Design-specific):

group[index]
- 12 -

Action Semantics
GroupIter Built-Ins - GroupIter data types have the following
support methods:

Establish the base group for the iterator – required before any other
iterator operations:

group_iter_expression.setGroup(group)

Reset the iterator to the front of the list:

group_iter_expression.front()

Return the iterator to the back of the list:

group_iter_expression.back()

Return the current item in the group:

group_iter_expression.current()

Increment the iterator’s position in the group, and return the new
current item in the group:

group_iter_expression.next()

Decrement the iterator’s position in the group, and return the new
current item in the group:

group_iter_expression.previous()

Return a boolean indicating if the last next() operation has advanced
past the end of the list, or if the last previous() operation has advanced
past the beginning of the list:

group_iter_expression.finished()
- 13 -

Action Semantics
Expression Mechanics

Binary Expression – has two operand expressions combined by an
operator. Binary expressions can be nested, and grouped with
parenthesis:

[(] Expression Operator Expression [)]

Arithmetic Binary Operators

+plus
 -minus
*multiply
/divide
%modulus

Bitwise Binary Operators

&and
^exclusive or
|inclusive or
<<left shift
>>right shift

Boolean Binary Operators

<less than
<= less than or equal to
> greater than
>= greater than or equal to
&&and
||or
==equal to
!= not equal to

Unary Expression –

[(] UnaryOperator Expression [)]

Unary Operators

+arithmetic positive
- arithmetic negative
~complement
!Boolean not
- 14 -

Action Semantics
Literals

Boolean Literal

{ TRUE | FALSE }

Character Literal

A single character:

'character'

Integer Literal

One or more digits:

digit…

Invalid Class Instance Reference

NULL

Uninitialized or Invalid ServiceHandle Reference

EMPTY_SERVICE_HANDLE

Real Literal

For example, 3.45 or 3.45e-6:

IntegerLiteral . IntegerLiteral [e [-]
IntegerLiteral]-

String Literal

Use \ to embed a double quote “:

"character…"

Attaching Design Properties to Statements

Design Properties – each statement may have one or more name
value pairs accessible to the design templates. Properties are defined in
curly braces after the statement semicolon or closing curly brace. The
property name must begin with a letter followed by a letter, number or
underscore.

statement ; [{ property_name = "property_value",
…}]
- 15 -

4. Examples

The best place to see Action Language examples is in a sample system.
The fully executable Robochef system is available from Pathfinder
Solutions.

The SystemInit service of the FoodPrep domain contains examples of
object creation and association linking. Here is a portion of this service
action:

Ref<ContainerCache> cache;

Ref<Oven> oven;

Ref<Dishwasher> dishwasher;

Ref<Mixer> mixer;

Ref<Dispenser> dispenser;

// Set up the conveyance domain

CNV:Initialize();

// Create the appliances and start initialization

cache = CREATE ContainerCache
(type=RC_APPL_TYPE_CONTAINER_CACHE,
deviceHandle=201) IN Created;

GENERATE CC:Initialize() TO (cache);

oven = CREATE Oven(type=RC_APPL_TYPE_OVEN,
deviceHandle=202) IN Created;

GENERATE OVN:Initialize() TO (oven);

dishwasher = CREATE
Dishwasher(type=RC_APPL_TYPE_DISHWASHER,
deviceHandle=203) IN Created;

GENERATE DW:Initialize() TO (dishwasher);

mixer = CREATE Mixer(type=RC_APPL_TYPE_MIXER,
deviceHandle=204) IN Created;

GENERATE MIX:Initialize() TO (mixer);

dispenser = CREATE
Dispenser(type=RC_APPL_TYPE_DISPENSER,
deviceHandle=205) IN Created;
- 16 -

Examples
GENERATE DIS:Initialize() TO (dispenser);

// more …. – see Robochef example for full state
action

The DeterminingIfMoreOkSteps state action of the ActiveRecipe class in
the FoodPrep domain contains examples of finding across a reflexive
association, linking, unlinking, and event generation.

Ref<RecipeStepSpec> current_step;

Ref<RecipeStepSpec> next_step;

// find the current state being executed

current_step = FIND this -> A10;

// check to see what the next step is

next_step = FIND FIRST current_step -> A6 ->
@next_success_step RecipeStepSpec;

// if there is a next step

IF (next_step != NULL)

{

// associate active recipe with its next step

UNLINK this A10 current_step;

LINK this A10 next_step;

// perform the next step

GENERATE AR:PerformNextRecipeStep();

}

ELSE

{

// no more steps – recipe is complete

GENERATE AR:Done();

status = DONE_STATUS;

}

- 17 -

Examples
The performOperation service of the Appliance class demonstrates how
to create service handles.

ServiceHandle actionFailed;

ServiceHandle actionSucceeded;

actionSucceeded = CREATE ServiceHandle(this =
this) TO APPL:opComplete;

actionFailed = CREATE ServiceHandle(this = this)
TO APPL:opFailed;

AI:ApplianceRequest(deviceHandle, action, data1,
data2, data2, data4, actionSucceeded,
actionFailed);

The following is an example of how to use groups:

Group<String> names;

// adding elements

names.addBack(“Joe”); // Joe

names.addFront(“Mary”); // Mary, Joe

names.addBack(“Sue”); // Mary, Joe, Sue

// accessing elements

String name1 = names.front(); // Mary

String name2 = names[1]; // Joe

String name3 = names.back(); // Sue

The following is an example of how to use group iterators to iterate
through a list:

Group<String> names;

// iterate from end to beginning

GroupIter<String> cursor;

cursor.setGroup(names);

cursor.back();

WHILE(!cursor.finished())

{

// get name at current iterator position

String current_name = cursor.current();

// … do something with name

// advance to the next item in the group

cursor.previous();

}

- 18 -

A. Action Language Quick
Reference

The last page contains a quick reference guide that you can print out
and refer to while writing action language.
- 19 -

Action Language Quick Reference
[optional item]{either | or}0 or more iterations, …
All bolded characters (such as {|}, []) indicate actual use of these characters in AL.Italic items are substitution items or comments.
All AL keywords are case sensitive;// comments like C++; An Action Procedure has event or service Parameters and a StatementBlock.
Statement
Assignment { AttributeAccessor | Parameter | LocalVariable | ServiceHandleParameter } = Expression ;
Break BREAK;
Continue CONTINUE;
LocalVarDecl DataType variable_name { = initial_value };
ConstantDecl [EXTERN] CONST DataType variable_name [= initial_value] ; - valid only in system or domain init. action
Invocation { Accessor | BuiltIn method}; - a procedure call with no return value
ForEach (class) FOREACH cursor_variable = CLASS class name [WHERE (Expression)] { StatementBlock }
ForEach (nav) FOREACH cursor_variable = Navigation [WHERE (Expression)] { StatementBlock }
If IF (Boolean Expression) { StatementBlock } [ELSE IF { StatementBlock }] [ELSE { StatementBlock }]
Return RETURN [Expression];
StatementBlock Statement…
While WHILE (Expression) { StatementBlock }
Order (class) ORDER CLASS class_name BY ([{ / | \ }] attribute_name, …);
Order (nav) ORDER Navigation BY ([{ / | \ }] attribute_name, …);
Order (group) ORDER GROUP [{ / | \ }] group;
Accessors
AttributeAccessor instance_ref . attribute_name
CreateServiceHandle CREATE ServiceHandle ([parameter_name = Expression, …]) TO
 { domain_prefix | class_prefix }:service_name - returns a service handle
GroupItemIndex group[index] - 0-based index
InvokeServiceHandle CALL service_handle ([parameter_name = Expression, …]) - no return
DomainServiceInvocation domain_prefix:service_name(Expression, …) - may have a return value
ClassServiceInvocation class_prefix:service_name(Expression, …) - may have a return value
InstanceServiceInvocation instance_ref . [class _prefix:]service_name(Expression, …) - may have a return value
SubSuperAccessor supertype_reference ->Srelationship_number->subclass_name - performs a "downcast"
AssociationAccessor [Link | Navigate | Unlink]
Link LINK [@role_phrase1] instance1_ref A<number> [@role_phrase2] instance2_ref

[ASSOCIATIVE assoc_ref] - no return
Navigation (binary) [@role_phrase1] start_ref->A<number> [->@role_phrase2 dest_class_name]
Navigation (to assoc class) [@role_phrase1] start_ref_1 AND [@role_phrase2] start_ref_2 ->A<number>
Navigation (downcast) supertype_instance_ref->S<number>-><subclass_name>
Unlink UNLINK [@role_phrase1] instance1_ref Anumber [@role_phrase2] instance2_ref
EventAccessor { Cancel | Generate | ReadTime }
Cancel CANCEL event_name [TO (destination_ref)]
Generate GENERATE event_name (Expression, …) [AFTER (delay)] [TO (destination_ref)]
ReadTime TIME UNTIL event_name [TO (destination_ref)] - returns time remaining for delayed ev.
ClassAccessor { Create | Delete | Find }
Create CREATE class_name ([attribute_name = Expression, …]) [IN initial_state] - returns inst. reference
Delete DELETE instance_ref
Find (class) FIND [{ FIRST | LAST }] CLASS class_name [WHERE (Expression)] - returns an inst. reference or NULL
Find (nav) FIND [{ FIRST | LAST }] Navigation [WHERE (Expression)] - returns an inst. reference or NULL
Expression
accessors AttributeReference, EventAccessor, ClassAccessor, AssociationAccessor, SubSuperAccessor

BinaryOpExpression, Expression Operator Expression
BooleanConstant { TRUE | FALSE }
CharacterConstant 'character'
IntegerConstant digit… - one or more digits
invalid reference NULL, EMPTY_SERVICE_HANDLE
LocalVariable variable_name
Parameter parameter_name
RealConstant IntegerConstant . IntegerConstant [e [-] IntegerConstant]- 3.45 or 3.45e-6
ServiceHandleParameter service_handle [parameter_name]
StringConstant "character…" - use \ to embed "
UnaryOpExpression UnaryOperator Expression
Operators
Arithmetic + - * /% Bitwise & ^ |
Boolean < <= > >= && || == != Unary + - ~ !
DataTypes
[Boolean | Character | String | Real | Integer | GenericValue | Handle | Group<base_type> | GroupIter<base_type> | Ref<class_name> | ServiceHandle |
UserDefined enumeration | UserDefined typedef]
BuiltIn Methods - invoke via <expression>.<method>(args)
Group { addFront(item) | addBack(item) | insert(iter, item) | front() | back() | remove(item) | erase(iter) | removeAll() | size() }
GroupIter { current() | next() | previous() | finished() | front() | back() | setGroup(group) }
- 20 -

Index

Page numbers in the PDF version of this index are hyperlinks. In Acrobat, place your
cursor over the number and click to go directly to the page.

A

accessors 8
action semantics 4
actions 2

B

built-in methods 12

C

class attributes 2
class services 2
constants 8

D

data atom ordering 6
data types 4
design properties 15
domain initialization 2
domain services 2

E

event parameters 2
execution flow control 7
expression mechanics 14
expressions 8

L

literals 15
local variables 2

M

model transformation 3

P

PAL (Platform Independent Action Language) 1
PathMATE overview v
PathMATE toolset v

S

service parameters 2
state actions 2
statements 5
- 21 -

Index
system initialization 2

U

UML (Unified Modeling Language) 2

V

variables 8
- 22 -

	Preface
	Audience
	Related Documents
	Conventions
	What You’ll Need
	How to Use this Guide
	PathMATE Overview

	1. Introduction
	2. Action Overview
	What Are Actions?
	What Can Actions Do?
	What Makes Up an Action?
	How are Actions Used?

	3. Action Semantics
	Data Context
	Explicit
	Implicit
	Data Types

	Statements
	Data Manipulation
	Execution Flow Control
	Function Ins and Outs
	Expressions
	Variables
	Constants
	Accessors
	Built-In Methods
	Expression Mechanics
	Literals
	Attaching Design Properties to Statements

	4. Examples
	A. Action Language Quick Reference
	Index

