
1Published in Software Engineering Notes, ACM Press,
Volume 18, Number 1, January 1993

© Copyright 1993 by Project Technology, Inc.
All rights reserved.

1. Abstract

Shlaer-Mellor Object Oriented Analysis provides a com-
plete and executable description of a problem domain using
a set of formal analysis models: an information model, a set
of state models, and a set of process models. In this paper
we present the conditions that must be satisfied by a valid
Shlaer-Mellor Object Oriented Analysis.

2. Introduction

In Shlaer-Mellor Object Oriented Analysis [1, 2] the analyst
describes a problem domain by constructing a set of formal
models (see figure 1): An Information Model to define the
conceptual entities (objects) of the domain and the relation-
ships between those objects, a State Model to formalize the
behavior of each object, and a set of process models in the
form of Action Data Flow Diagrams to specify the process-
ing required in the state models. A formal analysis consists
of other derivative models: an Object Communication
Model summarizing the asynchronous communication
among the objects, and an Object Access Model summariz-
ing the synchronous access among the objects.

This paper lists the conditions that must be satisfied by a
valid Shlaer-Mellor Object Oriented Analysis. The “rules”
are descriptive; that is, they describe what a valid analysis
must contain but they do not prescribe how to actually
produce a valid analysis. The rules are designed for both
practitioners (analysts, designers, and implementers) as
well as for toolmakers developing CASE tools.

Shlaer-Mellor Object-Oriented Analysis Rules

Neil Lang

Project Technology, Inc.
10940 Bigge Street

San Leandro, CA 94577-1123
510-567-0255

http://www.projtech.com

3. Shlaer-Mellor Object Oriented
Analysis Rules

1. A large domain may be analyzed by parti-
tioning it into a set of subsystems. Each
subsystem must have a unique name.

2. The complete information model for the
domain will be partitioned into multiple
smaller information models. Each informa-
tion model is assigned to a separate sub-
system.

Batch Heater

Tank

Heating

Cooking

Done

On

Off

Tank Batch

Heater

On ADFD

Off ADFD

Heating ADFD

Cooking ADFD

Information Model

Batch State Model

Heater State Model

Information Models State Models Action Data Flow Diagrams

Done ADFD

Figure 1: Structure of the primary models of
Shlaer-Mellor Object-Oriented Analysis

2Published in Software Engineering Notes, ACM Press,
Volume 18, Number 1, January 1993

© Copyright 1993 by Project Technology, Inc.
All rights reserved.

3. Each object belongs to one and only one
subsystem. If a relationship exists between
objects in different subsystems, then a copy
of the object from the foreign subsystem can
be shown on the IM for this subsystem, but
the foreign object must marked distinctively
to indicate that it has been imported from
another subsystem.

4. Each object in a subsystem must have a
unique name. Objects must also be num-
bered uniquely to aid organizing the docu-
mentation.

5. Each object must have a unique KeyLetter.
The KeyLetter is a user-specified short
character string and is used in event labels
and process identifiers.

6. Each attribute within an object must have a
unique name. The full name of an attribute
has the form <object>.<attribute>. Note that
the <attribute> part of the full attribute name
can be the same in several objects.

7. Each object must have at least one identifier
i.e. an attribute or set of attributes whose
values uniquely distinguish each instance of
the object. The attribute(s) of the identifier of
choice for an object must be indicated.

8. Each relationship in a subsystem must have a
unique label of the form Rn (where n is an
integer).

9. Each relationship in a subsystem must be
formalized either through referential
attributes or through composition.

10. Referential attributes (i.e. attributes used to
formalize a relationship between objects) are
indicated by appending the label of the
relationship to the attribute.

11. The domain of a referential attribute must be
the same as the domain of the corresponding
attribute of the associated object.

12. A relationship Ri formed by composition (i.e.
Ri exists as a logical consequence of other
relationships Rj and Rk in the IM) must be
indicated as Ri = Rj + Rk.

13. Each object, attribute, and relationship in a
subsystem must be fully defined or described
to complete the documentation for the IM for
the subsystem. However foreign objects in a
subsystem do not have object or attribute
descriptions in the IM for that subsystem.

14. A relationship between objects in different
subsystems will appear in the IM for both
subsystems. However the relationship will
be described in only one of the subsystems.

15. An object may have one state model formaliz-
ing the lifecycle of its instances. The name of
the state model is the name of the object. The
KeyLetter of the state model is the KeyLetter
of the object.

16. An associative object may have an additional
state model to manage the creation of
instances of the associative object. The name
of this state model is <object>_ASSIGNER
where <object> is the name of the associative
object. The KeyLetter of this state model is
<KL>_A where <KL> is the KeyLetter of
the associative object. The analyst must
avoid creating another object in the IM with
the same name or KeyLetter as those of the
assigner state model.

17. As a consequence of the previous two rules,
each state model will have a unique name
and each state model will have a unique
KeyLetter.

18. Each state within a state model must have a
unique name. The full name of a state has
the form <state_model>.<state>. Note that
the <state> part of the full state name can be
the same in several state models.

19. Each state within a state model is also
assigned a unique number.

20. External entities (also known as terminators)
are those entities that are not part of the
subsystem but do generate events to and
receive events from state models. Each
external entity is also assigned a KeyLetter
which must be unique over all external
entities, objects, and state models within the
subsystem.

3Published in Software Engineering Notes, ACM Press,
Volume 18, Number 1, January 1993

© Copyright 1993 by Project Technology, Inc.
All rights reserved.

30. The following events involving timers are
defined as part of the OOA formalism:

TIM1: Set Timer(timer_id, ELx,
instance_id, time_interval) and
TIM2: Reset Timer(timer_id)

where timer_id is the identifier of the timer
to be set or reset, ELx is the label of the timer
expired event to be generated upon expira-
tion of the timer, instance_id is the instance
of the object to which the event ELx is
directed, and time_interval is the interval to
wait before generating the timer expired
event.

31. State models and external entities that
generate or receive events must appear on the
Object Communication Model.

32. An event which is generated by an external
entity or state model and received by another
state model must appear on the Object

Communication Model.

33. The TIMER state model and events generated
and received by the TIMER are not shown on
the OCM.

34. Each state in a state model has an action
associated with it.

35. An action modifying descriptive data for an
instance must ensure that the all data for that
instance is self-consistent upon completion.

36. An action creating or deleting instances of its
own object must ensure that any relation-
ships involving those instances are made
consistent with the rules and policies in the
IM.

37. An action must leave subtypes and
supertypes consistently populated.

38. Except for the action of a deletion state, an
action in the state model formalizing the
behavior of an object must always update the
current state attribute to indicate the new
current state of the instance.

39. A process model represents the desired
processing for the action associated with a
state. The name of process model is the
name of the associated state.

21. An object representing timers is part of the
OOA formalism. The object is named TIMER
and is assigned the KeyLetter TIM; both the
name and KeyLetter are reserved and cannot
be used for other objects in the IM. The
attributes of the object are timer_id,
instance_id, event label, time remaining,
and timer status. The TIMER object is not
shown on the IM. The object has a state
model which receives events to set and reset
a timer, and generates an event when the
timer has expired.

22. Events are generated by state models and
external entities.

23. Events are received by state models and
external entities.

24. An event is directed towards one and only
one state model or external entity. Further
more if the state model formalizes the
lifecycle of an object, then the event is
directed to a single specific instance of
the object.

25. An event is specified by i) an event name
which captures the real world incident being
abstracted, ii) the name of the state model or
external entity that the event is directed to,
and iii) the event data. Every event specifica-
tion is assigned a unique event label.

26. An event label has the following form: KLi
where KL is the KeyLetter of the state model
or external entity that receives the event, and
i is an integer.

27. Events are represented in state models using
the following form:

<Event_label>:<Incident_name>
(<event_data>)

28. If an event can cause an existing instance of
an object to transition to a new state, the
event data carried by that event must include
an identifier of the instance.

29. All events causing a transition into the same
state must carry exactly the same event data.

4Published in Software Engineering Notes, ACM Press,
Volume 18, Number 1, January 1993

© Copyright 1993 by Project Technology, Inc.
All rights reserved.

40. Process models consist of one or more pro -
cesses and one or more data flows. Control
flows and data stores may also appear in
process models.

41. Data stores are labelled “Timer”, “Current
Time” or with the name of an object in the
IM.

42. A data store labelled “Timer” represents the
time left on each timer in the system.

43. A data store labelled “Current Time” repre-
sents data describing current time.

44. A data store labelled with the name of an
object in the IM represents persistent data
associated with all instances and all
attributes of that object.

45. A given data store may appear in multiple
places in a single process model or in mul-
tiple process models.

46. Conditional control flows in a process model
are labelled with the circumstances under
which the control flow is generated.

47. Unconditional control flows in a process
model are unlabelled.

48. Both conditional and unconditional data
flows in a process model must be labelled
with the names of the data elements they
carry.

49. A data flow between a process and an object
data store is labelled with the attribute(s)
read or written by the process. The <object>
part of the full attribute name can be omitted
on such data flows.

50. Data flows between processes may represent
either attributes of objects or transient data
(i.e. data intended for use by another process
but not retained after the action has
completed execution).

51. If a data flow between processes represents
transient data, the data flow is labelled with
an appropriate variable name and further
labelled with (transient).

52. If a data flow between processes represents
persistent data, the data flow is labelled with
the name of the attribute(s) comprising the
flow. The label on the data flow will have
the form ObjectP.attribute1=ObjectC.attribute2
where ObjectP.attribute1 is the full name of
the attribute from the perspective of the
process producing the data and ObjectC.attr2
is the full name of the attribute from the
perspective of the process consuming the
data. If the attribute part of each full attribute
name is the same, then the flow may be
labelled with simply <attribute>.

53. Event data associated with the event that
causes a transition into the state executing the
action being modeled is shown as a data flow
from nowhere into the processes requiring the
event data. Each such data flow is labelled
with the names of only those attributes that
are required by the process.

54. An event generated by a process is shown as a
data flow directed away from the process to
nowhere. The data flow is labelled with
event’s label, meaning, and event data just as
it appears in the state model and OCM.

55. If a process deletes an instance of an object,
then the data flow from that process to the
corresponding object data store is labelled
with (delete). No attribute names are shown
on the data flow.

56. A process executes when all of its data inputs
and control inputs are available.

57. The data outputs and control outputs of a
process are available once the process com-
pletes executing.

58. Event data associated with the event that
caused the transition into the state whose
action is being modeled are always available.

59. Data from data stores are always available.

60. Each process in a process model must be
identified by a process identifier and a mean-
ingful name describing the purpose or func-
tion of the process.

5Published in Software Engineering Notes, ACM Press,
Volume 18, Number 1, January 1993

© Copyright 1993 by Project Technology, Inc.
All rights reserved.

68. The following event generators involving the
TIMER data store are defined as part of the
OOA formalism:

TIM.1 Generate event TIM1
TIM.2 Generate event TIM2

69. A test process is assigned the KeyLetter of the
state model in which it appears. If the test
process is part of an action of a state model
formalizing the lifecycle of an object, the test
may also access the data store for that object.

70. If the action for some state in a state model
(with KeyLetter X) includes a process that
accesses the data store of an object with
another KeyLetter (with KeyLetter Y) then
both state models X and Y must appear on
the Object Access Model. The access is
represented by an arrow drawn from X to Y.
The arrow is labelled with the corresponding
process identifier.

71. All subsystems in a domain must appear on
the Subsystem Communication Model.

72. An event which is generated by a state model
in one subsystem and received by a state
model in another subsystem must appear on
the Subsystem Communication Model.

References

1. Shlaer, S. and Mellor, S. J. Object-Oriented
Systems Analysis: Modeling the World in
Data, Prentice Hall, Englewood Cliffs, N.J.,
1988.

2. Shlaer, S. and Mellor, S. J. Object Lifecycles:
Modeling the World in States, Prentice Hall,
Englewood Cliffs, N.J., 1992.

61. Complex processes should be partitioned into
simpler processes of the following types:
accessors, transformations, event generators,
and tests. An accessor is a process whose
only purpose is to access data in a single data
store. A transformation is a process whose
purpose is to perform calculations on or
transform the input data. An event generator
is a process whose purpose is to produce
exactly one event. A test is a process that
tests a condition and produces one of several
conditional control outputs.

62. Processes that carry out the same function,
read/write the same attributes from/to the
same data stores, accept the same input from
other processes or events, produce the same
output to other processes, produce the same
events, and produce the same conditional
control outputs are the same process and are
to be labelled with the same process identi-
fier and name.

63. The process identifier has the form KL.i
where KL is the KeyLetter of an object, state
model or external entity and i is an integer
unique within all processes assigned that
KeyLetter.

64. An accessor is assigned the KeyLetter of the
object corresponding to the data store
accessed.

65. The following accessors involving the TIMER
data store are defined as part of the OOA
formalism:

TIM.3 Create Timer
TIM.4 Delete Timer
TIM.5 Read Time Remaining

66. A transformation process is assigned the
KeyLetter of the state model in which it
appears. If the transformation process is part
of the action of a state model formalizing the
lifecycle of an object, the transformation
process may also access the data store for that
object.

67. An event generator is assigned to the
KeyLetter of the object or external entity to
which it is directed. An event generator may
not access any data stores.

