
©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 1

A Mapping from Shlaer-Mellor to UML

Stephen J. Mellor
steve@projtech.com

Project Technology, Inc.
7400 N. Oracle Rd, Suite 365

Tucson, Arizona 85704
http://www.projtech.com

Ian Wilkie
ian@kc.com

Kennedy Carter Ltd.
14 The Pines, Broad Street

Guildford, Surrey, GU3 3BH
http://www.kc.com

1. Background

The purpose of this paper is to present a mapping between Shlaer-Mellor concepts and their
representations in UML. The objectives of this mapping are to:

• bring executable and translatable models to the UML community

• enable interchange between Shlaer-Mellor tools and UML tools

• bring the terminology as close as possible to UML so that the models “look like” UML

• introduce as little dissonance as possible for native Shlaer-Mellor users

The ideas presented here are the results of work that builds on the ideas presented in earlier papers
[M14,M15]. These earlier papers established the basis for using the UML notation to represent Shlaer-
Mellor models but did not examine many aspects of the formalism in any detail. In particular the
justification for the choices of mapping had not been fully established with respect to the UML meta-
model. This issue is vitally important if it is to be possible to interchange models between tools while
preserving their semantic content.

This latter issue is also becoming of greater importance to the wider UML community. In its current form
UML is designed to support a wide variety of different modelling techniques and formalisms. This is
evident, for example, in the state machine formalism which allows both Moore and Mealy formalism with
hierarchical states including concurrent sub-states and both synchronous and asynchronous calling
semantics. The result of this is not only that almost any state modelling style can be supported but also
that many combinations of elements have no defined execution semantic1. It is now widely recognised
within the UML community, however, that considerable benefit can be gained by forming subsets of the
UML with well defined execution semantics. Such subsets can form an “executable UML” which would

1 These are termed “Semantic Variation Points” in the UML specification

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 2

enable the simulation, execution, testing and ultimately translation of UML models into target code. As
part of this movement, work is progressing under the auspices of the OMG towards the definition of
“profiles” that define such subsets and towards the more detailed definition of the contents of “actions”
including a more precise definition of the execution semantics of UML models.

This paper, then, describes an executable UML “profile”.

This paper presents a combined approach encompasing the various different flavours of the Shlaer-Mellor
method. Throughout this paper we will refer to the various flavours, which are described in more detail
in section 11.

Finally, this work is not complete. Although all the elements of the Shlaer-Mellor method have been
enumerated and tentative mappings identified (see section 12), we have not yet fully established all the
implications. We welcome comments from the reader.

2. Principles

To make the mapping regular, we have to have a set of mapping principles that we can apply as uniformly
as possible throughout. We discuss below the use of names, stereotypes, and tags.

On Names. One purpose of this paper is to present a mapping between Shlaer-Mellor concepts and their
representations in UML. To maintain complete and clear domain separation between two, it would be
best to maintain two entirely different vocabularies, which would yield statements of the form “Represent
a (Shlaer-Mellor) object as a box with three compartments… .” This mapping, then, is from the concept to
its representation, an icon. However, the box-with-three-compartments represents a ‘class’ in UML, and
users of UML will always refer to the box-with-three-compartments as a class, for that is what it is.

The approach to naming taken in this paper is therefore as follows.

The notational mappings are generally presented as:

“Represent <Shlaer-Mellor concept> as <notational element>“

We name each notational element using UML terminology; (i.e. a ‘Box-with-several-compartments’ is
referred to as a ‘Class’). This reduces dissonance when reading a UML model based on the notational
elements under discussion. This also renders the use of this mapping in UML compliant tools more
straight forward.

However, for certain notational mappings (for example those that use the Package Diagram2) refering to
the UML representation simply by its representation type will be inadequate. For those situations we will
use the Shlaer-Mellor terminology.

2 We should not be surprised by this as the Package concept in UML is intended to be able to capture a
wide variety of different packaging concepts. It is inevitable that any use of packages in UML will have
to supply some method specific names.

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 3

On Stereotypes. A stereotype in UML is a way of introducing a new class of modelling element within a
model. A stereotype can only specialize an existing class in the metamodel. A stereotype is shown
between guillemets << and >>.

We use a stereotype to distinguish one use of a symbol from another, in a manner that extends the UML
metamodel. For example, we shall use the package diagram to model both subsystems and domains.
Because the UML makes no distinction between these two concepts and we use the same diagram for both,
there must be a way to distinguish between them.

We also define a stereotype as high up in the model hierarchy as possible so that the stereotype appears as
few times as possible. For example, we can stereotype the a UML Class Diagram as a (Shlaer-Mellor)
Class Model so that all attributes on that model are required to be atomic.

On Tags. Tags are used to add arbitrary information to the models, but not to extend the meta-model.
Tags are represented as a comma-delimited sequence of specifications, surrounded by braces {}. Each
specification may be simply a keyword (a tag), or a keyword with a value (a property), expressed as
keyword = value. Keywords and values are simply strings.

We use tags to add information about a model element in a manner that does not extend the metamodel of
UML. For example, we shall use a tag to indicate mathematically dependent attributes.

Often, we use tags to represent Shlaer-Mellor concepts such as Numbers and Key Letters. These are
present in Shlaer-Mellor to aid readability and to support model management. As such they are not
central to the formalism itself and may be omitted from diagrams if desired. In this paper we will always
show such tags in order to demonstrate what they look like if present.

3. The Domain Chart

Represent the Domain Chart using a Package Diagram.

The package diagram representing a domain chart is stereotyped to allow only packages with no contents,
and no tags or other names on the dependencies.

Opti cal Di sk
Management

Process I/ O

Operator
Interface

Figure 1 - Example Domain Chart with Shlaer-Mellor Notation

Figure 1 shows an example domain chart with the equivalent UML package diagram in Figure 2 below.

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 4

Opti cal Di sk
Management

Process I/O

Operator
Interface

Figure 2 - Example Domain Chart as a Package Diagram

4. Subsystem Models

Subsystem Relationship Model. Represent the Subsystem Relationship Model as a Package Diagram.

The package diagram representing the subsystem relationship model is stereotyped to allow only packages
with no contents.

Name each package as a triple comprising the subsystem name, the prefix, and the object number range.

Name each dependency between packages with the relationship identifiers expressed as tags. For
example, express the relationships R10 and R182 as the tags { R10, R182 }.

Use a single dependency arrow in an arbitrary direction.

Subsystem Communication Model. Represent the Subsystem Communication Model as a Package
Diagram.

The package diagram representing the subsystem communication model is stereotyped to allow only
packages with no contents.

Name each package as a triple comprising the subsystem name, the prefix, and the object number range.

Name each dependency between packages with the event identifier and name expressed as property
specifications. For example, express the events DTN21: Reschedule on disruption and TOM8: Switch to
new schedule as { DTN21 = Reschedule on disruption, TOM8 = Switch to new schedule }.

Use the dependency arrow to point in the direction that the events are being sent.

Subsystem Access Model. Represent the Subsystem Access Model as a Package Diagram.

The package diagram representing the subsystem access model is stereotyped to allow only packages with
no contents.

Name each package as a triple comprising the subsystem name, the prefix, and the object number range.

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 5

Name each dependency between packages with the process identifier expressed as tags. For example,
express accesses to the processes DTC.2, DTZ.4 as { DTC.2, DTC.4 }.

Use the dependency arrow to point in the direction of the access.

5. Object Information Model

Represent the Shlaer-Mellor Information Model using a UML Class Diagram.

The class diagram representing the object information model has several stereotypes that apply to the
model as a whole and apply to each of the kinds of elements that may appear on the model. We describe
each stereotype below when we describe each kind of model element.

Objects. Represent a Shlaer-Mellor object using a UML Class. The class has three compartments:

• the name compartment, which contains the name comprising three parts, the object number,
object name, and key letter

• the attribute compartment (see section below) and

• the operation compartment (see section below)

Represent an imported object using italics for the name, with a note reading “(from <subsystem name>)”

Attribute. Represent an attribute with its name, a colon, and its type. (See the subsection on typing
below.)

We stereotype the class diagram that represents an object information model to require attributes to be
single valued.

Represent an identifying attribute with a tag { I=2 }, { I=2 }, { I=33 }… If an attribute participates in
multiple identifiers, the tags may be strung together as { I=1,2 } etc.

Represent a referential attribute with a tag corresponding to the relationship number(s) , i.e. { R=2,4 }

Represent a constrained referential attribute by extending the tag to have the letter ‘c,’ i.e. { R=2c }

Represent mathematically dependent attributes with a tag { M }.

Types. Represent the domain-specific data type as a string.

Separately, define the domain-specific data type in terms of its base types as defined in Data Types in
OOA [M4] or the ASL Reference Manual [M10]

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 6

Operations. Shlaer-Mellor does not show operations on the object information model. However, the
UML class diagram does allow operations, and there are potential uses for them in Shlaer-Mellor OOA,
such as data accessors, transformers or syncronous services3. Whether or not these are shown is optional.

Represent a read accessor as an operation with isQuery = true. Use the standard UML syntax for the
operation, i.e. OperationName(ParameterName : ParameterType = DefaultValue, …) : ReturnType. Do
not include the instance identifier.

Represent a write accessor as an operation.

Represent a (publicly accessible) transformer as an operation with the tag { Transform }

Represent a synchronous service as an operation with the OperatioName being the name of the
synchronous service. Do not include the key letter and service number as part of the name. These are
modelled as tags on the operation.

Relationships. Represent a relationship as a class association, with the multiplicity and conditionality
using numbers as in UML (i.e. 1c à 0..1, M à 1..*)

Represent the relationship identifier (i.e. R2 or R4) as an association name. Use the same approach for
relationships constructed by composition: R3 = R2 + R4.

Represent the relationship roles names as association roles, such as ‘owns’ and ‘is owned by.’4

Associative Objects. Represent an associative object as an association class. Note that in the UML meta-
models, the association and the association class are indistiguishable entities. This has the effect that
Shlaer-Mellor “many-associative” relationships (e.g. M-(M:M) or M-(1:M) etc.) cannot be modelled
directly in UML. Instead, for such situations analysts must create an additional class with a M:1
association with the original association class.

Associative Objects with Assigners. Show an associative object with an assigner with a stereotype
<<assigner>>.

Note that this stereotype can designate two classes expressed as one on the graphic. The name of the
“base” class is as given by the user “5, Dog Adoption, DA” and the assigner is name “<null>, Dog
Adoption-A, DA-A”. This will allow us to build two state models in a UML repository.

Sub/Supertype Relationships. Represent a sub/supertype relation using the UML generalization relation.

3 According to method flavour. Note that we would not normally show “Event Taker” operations on the
class since these represent only one style of implementation of state machines. Other, different styles are
possible. We consider the State Machine to be a separate part of the formalism from the operations shown
on the class diagram.

4 Note that the classic UML “style” (as used in the many books) is to use nouns as roles on associations.
However, the UML standard does not dictate this and allows for the Shlaer-Mellor style verb phrases. We
maintain that such verb phrases have many advantages over the noun style.

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 7

We stereotype the class diagram to require the tag {complete, disjoint}. This information may be
expressed visually on a model at the tool vendor’s option.

Represent sub/supertype relationship numbers as tags {Rn}.

Note that in the UML, generalisation is not the same thing as inheritance. Rather, inheritance is a set of
mechanisms that can be applied to a generalisation hierarchy. Such an application is not, however,
compulsory. Indeed, the UML specification makes it clear that using inheritance makes it difficult to
model multiple classification and indicates that other approaches might be more appropriate in this
context. We suggest that the Shlaer-Mellor sub/supertype concept is such an approach. In the Shlaer-
Mellor view of generalisation then, we think of the superclass as having instances (objects) that are
distinct from, but associated with the subclass instances.

1. Dog D

* Licence Number
• Name
• Breed
• Weight
• Owner (R3)

2. Dog Owner DO

* Name
• Address

is
owned
byowns

R3

Figure 3 - A section of a Shlaer-Mellor Information Model

The example information model fragment shown in Figure 3 will become the UML class diagram
fragment shown in Figure 4.

Dog {no=1,kl=D}

Licence Number {I=1}
Name
Breed
Weight
Owner {R=3}

Dog Owner {no=2,kl=DO}

Name {I=1}
Address

is
owned
byowns

R3* 1

Figure 4 - UML Class Diagram Fragment

6. Object Communication Model

Represent the Shlaer-Mellor Object Communication Model (OCM) using a UML specification level
collaboration diagram.

Objects Represent the Shlaer-Mellor object's state model (OOA91) or the object (OOA97) by a role on the
collaboration diagram. Name the role with the name of the object. Draw a line between those
objects that communicate with each other.

Event Transmissions Represent asynchronous communications (event transmissions in OOA92 and

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 8

OOA97) by arrows with a half arrow head in the style of UML asynchronous message. Label the
message with the event meaning (name) from Shlaer-Mellor. Indicate the key letter and event
number with tags.

Syncronous Invocations Represent synchronous service invocations (from OOA97) by a arrow with
full arrow head in the style of a UML synchronous message. Label the message with the service
name from Shlaer-Mellor. Indicate the key letter and service number with tags.

Terminators Represent terminators as interfaces classes with a role on the collaboration diagram.
Name the role with the name of the terminator. Stereotype type the role as <<interface>>.

Domain Based Services To represent invocations/transmissions from OOA97 domain based services,
place a role on the collaboration diagram to represent the class corresponding to the domain
itself. Name the role with the Key Letter of the domain.

Options The key letter and event/service number tags may be omitted if required.

Example

The following Shlaer-Mellor diagram:

A
d
m
i
n
i
s
t
r
a
t
o
r

P
a
t
i
e
n
t

AD1:patient
admitted

P1:admit patient

R
e
s
o
u
r
c
e

A
l
l
o
c

RA1:assign bed

B2:bed assigned

P2:patient
now in bed

B
e
d

L
o
c

T
r
a
c
k

LT6:request case
notes

Figure 5 - An example Shlaer-Mellor OCM

(where dotted lines represent asynchronous communication and solid lines represent sychronous
invocations), becomes:

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 9

admit patient {kl=P,no=1}

<<interface>>
Administrator

Patient

Bed <<interface>>
Resource
Allocation

<<interface>>
Location
Tracking

patient admitted
{kl=AD,no=1}

patient now in bed
{kl=P,no=2}

request case notes
{kl=LT,np=6}

bed assigned
{kl=B,no=2}

assign bed
{kl=RA,no=1}

Figure 6 - The OCM as a Collaboration Diagram

7. State Models

In Shlaer-Mellor a state model has two representations; The State Transition Diagram (STD) and The
State Transition Table. We detail the mapping of these representations and the components of the
underlying state model that they represent.

Representations

State Transition DiagramRepresent the Shlaer-Mellor STD using a UML stereotyped UML state chart.
The stereotyping constrains the chart not to use heirarchical states.

State Transition Table Represent a Shlaer-Mellor STT as a sterotyped tabular representation. Label
the OOA92 "Non-existent" state as "Initial State".

States

States Represent Shlaer-Mellor states as states on the state chart. Name the states using the name from
the Shlaer-Mellor state. Number the states using tags.

Deletion State Represent a Shlaer-Mellor deletion state (i.e one in which self deletion occurs and the
box is shown as dotted) by a UML state with an unlabeled (completion) transition to the final
state vertex. If there are multiple deletion states then create multiple transitions to the single final
state vertex.

Quiescent State Represent a quiescent state (i.e. one in which self delection does not occur, but has no
outgoing transitions) as a state on the UML state chart with no outgoing transitions.

State Action Model the Shlaer-Mellor state action as a UML entry action on the corresponding state

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 10

Events

Event Represent Shlaer-Mellor events as signal events on the state chart. Label the signal event with
the event meaning (name) from Shlaer-Mellor. Indicate the key letter and event number with
tags.

Self Directed Event Represent a Shlaer-Mellor self directed event as a UML "completion transition".
This guarantees the correct semantics for the transition. However, to avoid confusion for those
used to Shlaer-Mellor models, label the transition with the appropriate event.

Event Parameter Represent Shlaer-Mellor supplementary event data (event parameters) as signal
event parameters.

Polymorphic Event Represent OOA92 style polymorphic events as signal events with a key letter
appropriate to the superclass to which they are directed. Such events should be placed used to
label transitions as appropriate on subclass state charts. To allow for key letters not being shown
on the OCM or the state chart, event names must be unique across the entire heirarchy.

Represent OOA96 style polymorphic events by creating a Polymorphic Event Table providing a
mapping from the superclass signal events to the appropriate subclass events. In this case even
names need only be unique within a particular class.

Effects

Transition Represent a Shlaer-Mellor state transition as a transition on the UML state chart. Label the
transition with the signal event corresponding to the appropriate Shlaer-Mellor event

Creation Transition Show a Shlaer-Mellor creation transition on the UML state chart as a transition
from the intial state vertex to the creation state. If there was more than one creation
state/transition, then this should be shown as multiple transitions from the single initial state
vertex.

Ignore Represent the Shlaer-Mellor "ignore" response on the UML state chart by showing an internal
transition on the appropriate state labeled with the signal event which is ignored. Show no
action for the transition.

Cannot Happen Represent the Shlaer-Mellor "cannot happen" response on the UML state chart by
showing an internal transition on the appropriate state labeled with the signal event which
"cannot happen". Show a stereotyped action <<cannot happen5>> for the internal transition.

Shouldn't Happen Represent the OOA97 "shouldn't happen" response on the UML state chart by
showing an internal transition on the appropriate state labeled with the signal event which
"shouldn'thappen". Show a stereotyped action <<shouldn't happen6>> for the internal transition.

5 <<cannot happen>> is a UML "raise" action that causes raising of an exception.

6 <<shouldn't happen>> is a UML "raise" action that causes raising of an exception.

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 11

Hold Represent the OOA97 "hold" response on the UML state chart by showing an internal transition
on the appropriate state labeled with the signal event which is to be held. Show a UML "defer"
action for the transition.

Options

The keyletter, state number and efvent number tags may be ommitted if required. Internal transitions will
not normally be shown if the STT notation is also employed.

Example

The following Shlaer-Mellor state transition diagram:

1. Creating Pre-Paid
Transaction

Action 1

2. Creating Manual
Transaction

Action 2

3. Transaction in
Progress

Action 3

4. Transaction
completed

Action 4

TX1:Pre-Paid Transaction
Started(pump_no)

TX2:Manual Transaction
Started(pump_no)

TX3:Transaction
In Progress(pump_no)

TX3:Transaction
In Progress(pump_no)

TX4:Transaction
Complete(pump_no,fuel_quantity)

becomes a UML state chart as follows:

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 12

Creating Pre-Paid
Transaction{no=1}
entry/
Action 1

Creating Manual
Transaction{no=2}
entry/
Action 2

Transaction in
Progress {no=3}
entry/
Action 3

Transaction
completed {no=4}
entry/
Action 4

Pre-Paid Transaction
Started(pump_no) {kl=TX,no=1}

Manual Transaction
Started(pump_no) {kl=TX,no=2}

Transaction
In Progress(pump_no){kl=TX,no=3}

Transaction
In Progress(pump_no){kl=TX,no=3}

Transaction
Complete(pump_no,fuel_quantity){kl=TX,no=4}

8. Assigner State Models

Represent an OOA91 assigner state model by a state chart sterotyped as <<assigner>> attached to the
associative class. The streotyping prehibits creation states, deletion states and polymorphism. Label
events with a key letter in the form "<class kl>-A".

Represent an OOA96 assigner state model by a state chart sterotyped as <<assigner>> attached to the
partititioning association. The streotyping prehibits creation states, deletion states and polymorphism.
Label events with a key letter in the form "R<association number>-A".

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 13

9. Synchronous Operations

Represent OOA92 and OOA97 style synchronous services as UML operations with the corresponding
service actions as UML methods7. The invocation of such operations is shown on the OCM as described
previously. Optionally, the services can also be shown in the Class Diagram.

10. Acknowledgements

Both authors are indebted to the many people who have contributed ideas over the years.

In particular, SJM would like to thank....

ITW would like to thank all the consultants and developers at Kennedy Carter. In particular for the
specific issue of the UML mapping, he has benefited from many useful conversations with Colin Carter
and Paul Francis. Andy Land deserves special praise for the painstaking care with which he picked his
way through the 300+ pages on the UML specification in order to ensure the correctness of the mappings.

7 Note that UML 1.3 does not allow methods to have “actions”. This is certain to be changed in the
“Precise Action Semantics” enhancement to UML currently being defined under the auspices of the OMG.

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 14

11. Method Baselines

Since the publication of the first book on OOA by Shlaer and Mellor various clarifications and extensions
have been issued. In addition, others have contributed ideas, many of which are in active use. The
intention of this section is to summarise these so that the discussion of the mapping to UML may be seen
in context. It is not intended that this in any way replaces the published definitions of these extensions and
in case of doubt the original publications should be consulted.

A complication in defining clear versions of the method is that there have often been a continuous series
of minor improvements that have been incorporated into, for example, training material or consulting
work on real projects without there having been an "official" and published release. Nevertheless, it is
useful and convenient to attempt to define such versions.

11.1 OOA 88

This method, described in [M1] is confined mainly to Information Modelling with a minimal treatment of
dynamic modelling and “design by translation”.

11.2 OOA 91

The method as published in “Object Lifecycles: Modelling the World in States” [M2], represents the first
virtually complete description of OOA as we might recognise today. It differs from OOA 88 in the
following respects:

• Minor Improvements to the Information Modelling formalism and notation such as Numbered
Relationships.

• Substantial definition of dynamic behaviour in terms of interacting state machines executing
models represented by State Transition Diagrams and State Transition Tables. Included with this
was a treatment of the rules of synchronisation and concurrency within an OOA model.

• Introduction of the idea of domain partitioning with an outline treatment of bridges.

• A discussion of the Software Architecture that emphasised the idea of translation as system
construction approach.

11.3 OOA 92

While developing CASE tool support that understood the formalism Kennedy Carter extended the
definition and notation some areas. Most of these issues were documented in the product’s User Guide,
although some technical notes were written.

The following issues were addressed:

Information Models

The following changes were made:

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 15

• The case of a general n-way relationship that had briefly been mentioned in OOA 88 but omitted
from OOA 91 was withdrawn completely from our support. Our experience was that such
relationships are very hard to understand and the real-world issues that they represent are better
described by a number of simpler relationships.

• The notion of an "attribute domain", which was informally described in OOA 91 was tightened to
include the idea of a data type with optional constraint.

State Models

In order to make the STT representation a complete description of the state model the following were
added:

• A row representing the state of an instance before its creation. This pseudo-state enables the STT
to show creation transitions. In addition, it allows the analyst to distinguish between the arrival
of an event targeted at a non-existent instance being an error ("Cannot Happen") and being
expected ("Ignore").

• The addition of the effect "Meaningless" for events arriving for instances in a state where the
instance is deleted.

Other changes were:

• The notion of a polymorphic event was formally introduced [M12,M13].

• The idea of “synchronous services” was introduced [M7]. Such services specify processing that
is executed synchronously with respect to the invocation and can return data to the invoking state
action. OOA 97 refined the ideas and introduces the formal association of such services with
objects and with object instances.

• Self directed events go to the head of the event queue for an instance. (Previously this was a
recommendation only).

Process Models

• The Action Specification Language (ASL) [M10] was introduced as an alternative to Action Data
Flow Diagrams (ADFDs) for specifying process models.

Domains and Bridges

• Introduction of an “OOA of Bridges” describing all the possible bridges mappings that can exist
between OOA domains [M8].

• Interaction with other domains captured through events being sent to8/from terminators.
Guidelines were provided for the level of abstraction for the terminator (i.e. that the terminator

8 In OOA 97 the idea of an event being sent to a terminator was replaced with a “terminator service
invocation” akin to a wormhole [M6].

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 16

represents the “ultimate source or sink” of a structured analysis “essential model” rather than the
domain that implements it).

11.4 OOA 96

The “OOA 96 Report” [M3] tidied up a number of a number of loose ends in the description of OOA 91
and introduced some additional concepts. Some of these concepts had previously been described in
Project Technology training material, but not incorporated in an “official” description of the method.

In outline the areas addressed were:

Information Models

• Clarification of the ideas of mathematical and stochastic dependence of attributes. Introduction of
the notation (M) for mathematically dependent attributes replacing the (D) notation used
previously.

• Clarification of the idea of relationship loops and composed relationships.

• Clarification to the ideas of reflexive relationships and the introduction of a new special case of
symmetric reflexive relationships.

State Models

• Notational distinction between identifying event parameters and supplemental data.

• Events can no longer be sent to terminators.

• Self directed events go to head of the event queue for an instance.

• Formal introduction of polymorphic events through the idea of a “Polymorphic Event Table”

• Clarification to the definition of the operation of the Finite State Machine mechanism.

• Occurrence of “Cannot Happen” at run time defined as an analyst error.

• Introduction of the new concept of “multiple assigners”

• Clarifications to the rules surrounding object instance creation and deletion

Process Models

• Process models are not longer allowed to access the “Current State” attribute of an active object
(except in the special case of synchronous creation).

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 17

• Introduction of the “proper attribution” rule for transient data on ADFDs9

• Introduction into ADFDs of the ideas of “base processes” working on (possibly ordered) sets of
data, thus formally supporting the idea of iteration.

• Changes to the allowable properties of different process types on ADFDs.

• Replacement of the “Timer” mechanism with a simpler “Delayed Event” mechanism.

• Introduction of the term “wormhole” to refer to the invocation of services provided by other
domains.

11.5 OOA 97

OOA 97 was an accumulation of a number of issues that built up in the course of consultancy work.
These issues were then gathered into a single OOA 97 document [M9].

• Refinement of the idea of synchronous services by formal association of services with domains,
objects and instances of objects. In ASL this association was captured with a defined syntax for
the service calls.

• Introduction of the additional FSM responses of “Hold” and “Shouldn’t Happen”. The first of
these was to deal with a specific class of problem complexity, the second in response to the OOA
96 rules that classify “Cannot Happen” as an analysis error if it does happen.

• Introduction of exception handling mechanisms within the OOA formalism.

• Introduction of support from the formalism for both “Deferred” and “Dynamic” data types.

• Introduction of a comprehensive support for the definition of Bridges within OOA/ASL including
the idea of “counterpart relationships”.

In order to support these ideas, the definition of ASL was upgraded from ASL 2.4 to ASL 2.5.

11.6 OOA 96++

Since the OOA 96 report, Shlaer and Mellor issued further method documents [M5, M6, M7] on the
subjects of Data Types, Bridges & Wormholes and Synchronous Services. For convenience we refer to
these as OOA 96++.

• Introduction of formal notion of a Data Type with a base type, range and precision and units

9 This rule has been subsequently refined to the idea that all transient flows should have a defined type
[M4].

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 18

• Introduction of idea of wormholes with client-server associations managed through transfer
vectors

• Introduction of idea of a synchronous service provided by a domain.

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 19

12. Shlaer-Mellor to UML Meta-Model Mapping

The following table outlines the mappings between Shlaer-Mellor modelling concepts and the UML meta-
model. These mappings have been chosen to be strictly correct in terms of the definition of the semantics
behind the meta-model.

Shlaer-Mellor
Concept

Version
Specific

UML Concept

Information
Modelling
Object Constrained Class
Attribute Attribute
Identifier Collaboration of Attributes
Binary Relationship Association
Super/Sub Type
Relationship

Constrained Generalisation

Associative
Relationship

Association Class

Symmetric
Reflexive
Relationship

Stereotyped Association

Composed
Relationship

Association with Constraint

Referential Attribute Attribute with Tag
Mathematical
Dependancy

Attribute with Constraint and Tag

Attribute Constraint Constraint
Base Types

Integer OOA92 Type
Real/Numeric Type

Boolean Type
Extended Boolean OOA96++ Type

Ordinal OOA96++ Type
Duration OOA96++ Type

Time-of-Day Type
Date Type

Text/Symbolic Type
Arbitary OOA96++ Type

Untyped Instance
Handle

OOA92 Type

Domain Specific
Types

Constrained Base
Type

Type

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 20

Enumeration Type
Structure Set OOA92 Type

Typed Instance
Handle

OOA92 Type

Dynamic OOA97 Type
Deferred OOA97 Type

Units OOA96++ Type
Default Value OOA96++ Type

Range Type
Precision Type

Object Instance Object
Relationship
Instance

Link

Information Model
Diagram

Stereotyped Class Diagram

State Modelling
Instance State
Model

Constrained State Machine asscociated with Class

Assigner State
Model

OOA91 Constrained State Machine asscociated with Class
OOA96 Constrained State Machine asscociated with Class and Association

State State
Event Constrained Signal/Reception Pair. "Event Direction" maps to

Reception is BehaviouralFeature is Feature is owned by classifier is
class(model element), Tied to event on state machine by association
with Signal Event

Effects
Transition Transition

Cannot Happen Transition associated with State by Internal Transition with Tag
Ignore Transition associated with State by Internal Transition with Tag

Hold OOA97 Event associated by "deferred event" to state
Shouldn't Happen OOA97 Transition associated with State by Internal Transition with Tag

Non-existent State OOA92 Initial Pseudo-State
Creation
Event/State/Transiti
on

Constrained Signal Event/State/Transition from Pseudo-State to the
state

Terminal State Constrained State that calls destroy event at end of entry action
Terminator Sterotyped Class, visible outside the package
Event Parameter Parameter on Signal Event
Polymorphic Events

OOA92 Each "event availability" is an additional signal reception ultimately
owned by the class for which is is available

OOA96 Each "OOA event" alias is an additonal signal & reception "raised" by
the aliased signal/reception pair

Instance State
Transition Diagram

Stereotyped State Chart

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 21

Assigner State
Transition Diagram

Stereotyped State Chart

Instance State
Transition Table

(Table)

Assigner State
Transition Table

(Table)

Object
Communication
Model

Specification Level Collaboration Diagram

Thread of Control
Chart

Sequence Diagram

Synchronous
Services
Domain Based
Service

OOA92 Operation owed by an interface class owned by the (domain)package

Object Based
Service

OOA97 Class based operation

Instance Based
Service

OOA97 Instance based operation

Service Parameters OOA92
Input In Parameters

Output Return Parameters
Polymorphic
Service

OOA97 IsPolymorhpic Operation with methods at each subclass

Object Access
Model

TBD

Supplementary
Scenario OOA92 Operation/Method of class in an initialisation subpackage belonging

to domain package
Scenario Schedule OOA92 Operation/Method of class in an initialisation subpackage belonging

to domain package
External OOA92 Operation/Method of class in an initialisation subpackage belonging

to domain package
External List OOA92 Operation/Method of class in an initialisation subpackage belonging

to domain package
Exception Handler OOA97 TBD
Raising Exceptions OOA97 TBD

RD & Bridges

Domains etc
Domain Stereotyped Package
Dependency Dependency
Build Set Stereotyped Package with import dependencies on the domain

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 22

packages that it uses
Domain Chart Package Diagram

Contracts
Contract N/A
Contract Type N/A
Closure Service Signal or Operation

Bridges
Terminator Service OOA92 Operation on Stereotyped Class
Untyped IH/Transfer
Vector

OOA96++/
OOA97

Parameters on the operation

ASL
Mapping/Bridge
Table

OOA97 Method provided by class in the build set package

Peer-to-Peer
Counterpart
Relationship

OOA97 association between terminator classes in imported domain packages

Specific/Generic
Relationship

OOA97 generalisation between SCT and specific classes in imported domain
packages

Explicit S/G CP
Mapping

OOA97 Stereotyped method provided by the SCT class which raises the
specific class operation

Implicit S/G CP
Mappings
Event Consumption OOA97 Action on transition

Pre-State OOA97 Addition to entry action
Post-State OOA97 Addition to end of entry action

Pre-Service OOA97 Additional method with pre-appendage
Post-Service OOA97 Additional method with post-appendage

Attribute Access OOA97 TBD

Architectures
Tag Group Tag
Tag(Colour) Tag
Tag Attachment
(Colourisation)

Application of Tag (Tag Value)

Miscellaneous
Subsystems

Subsystem Package
Foreign Object Imported Class

Foreign
Relationship

Association belonging to imported class

Subsystem
Relationship Model

Stereotyped Package Diagram

Subsystem
Communication

Stereotyped Package Diagram

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 23

Subsystem Access
Model

Stereotyped Package Diagram

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 24

References

[M1] Sally Shlaer and Stephen J. Mellor
Object Oriented Analysis: Modeling the World in Data
Prentice Hall, 1988

[M2] Sally Shlaer and Stephen J. Mellor
Object Oriented Analysis: Modelling the World in States
Prentice Hall, 1992

[M3] Sally Shlaer and Neil Lang
The OOA96 Report
Project Technology, 1995

[M4] Sally Shlaer and Stephen J. Mellor
Data Types in OOA
Project Technology, 1997

[M5] Sally Shlaer and Stephen J. Mellor
Bridge and Wormholes
Project Technology, 1996

[M6] Sally Shlaer and Stephen J. Mellor
Bridge and Wormholes
Project Technology, 1996

[M7] Sally Shlaer and Stephen J. Mellor
Synchronous Services
Project Technology, 1996

[M8] Christopher Raistrick
A Practitioners Guide to the Use of Bridges in Shlaer-Mellor Recursive Development
Kennedy Carter, 1994

[M9] Ian Wilkie, Colin Carter and Paul Francis
OOA 97
Kennedy Carter (KC/OOA/CTN 53)

[M10] Ian Wilkie, Adrian King, Mike Clarke and Chas Weaver
The Action Specification Language (ASL) Reference Manual
Kennedy Carter, (KC/OOA/CTN 06)

[M11] Ian Wilkie
Synchronous Services
Kennedy Carter, 1994 (KC/OOA/TN 44)

[M12] Ian Wilkie
Polymorphic Events
Kennedy Carter, 1994 (KC/OOA/CTN 09)

[M13] Paul Francis and Ian Wilkie
Polymorphic Events in OOA/RD

©Project Technology, Inc. 1999 ©Kennedy Carter Ltd. 1999 V1.0 September 1999 Page 25

Kennedy Carter, 1999 (KC/OOA/CTN 57)

[M14] Stephen J. Mellor and Neil Lang
Developing Shlaer-Mellor Models in UML
Project Technology, 1997

[M15] Christopher Raistrick, Dean Spencer and Ian Wilkie
OOA/RD to UML Mapping
Kennedy Carter, 1998 (KC/OOA/CTN 64)

