
Synchronous Services

Sally Shlaer
Stephen J. Mellor

1 August 1996

Note to reviewers: This paper is an extract from an early chapter of the upcoming RD book. It should be
read before Bridges and Wormholes (another extract to be released shortly).

version 960801 1 syncserv.doc
 Copyright 1996, Project Technology, Inc. All rights reserved.

Synchronous Services

Sally Shlaer
Stephen J. Mellor

1 August 1996

1. Processing in a Domain

In Shlaer-Mellor models, the processing needed to move objects through their lifecycles is expressed in
state models and, at a finer level of detail, in ADFDs. The state models and ADFDs, taken together,
provide all of the logic and processing necessary to keep instances of a given domain consistent with one
another while accomplishing the mission of the domain.

However, in certain cases, there may be some additional processing that is associated with the domain
but is not part of any object's lifecycle. The need for this processing arises because of a requirement to
provide information to a neighboring domain. Consider, for example, Figure 1.1. Here the application
domain needs to obtain the temperature of a particular magnet. Now let us assume that the Process
Input/Output (PIO) domain reads each analog input value periodically from the hardware interface as part
of the lifecycle of an Analog Input Point object. The processing required to hand the current value of
magnet temperature to the application domain is therefore entirely independent of Analog Input Point's
lifecycle: PIO needs simply to pass back the most recent reading of the required point.

Such an operation -- however extensive -- that is not provided in the lifecycle of object(s) in the domain
is known as a synchronous service.

Get
magnet

temperature

temperature

magnet ID

Figure 1.1: The application domain acquires a sensor-based data item from the
 Process Input/Output domain.

2. Specifying a Synchronous Service

DEFINITION. A synchronous service is an operation that is provided by a domain for synchronous1

invocation by that domain's clients or servers.

1"Synchronous" in the analysis sense. See section 3.

version 960801 2 syncserv.doc
 Copyright 1996, Project Technology, Inc. All rights reserved.

The analyst2 should think of a synchronous service as similar in nature to a function. When the
synchronous service is invoked, control is transferred to the service together with values for any input
parameters defined by the synchronous service. When the synchronous service is complete, control is
returned to the ADFD (or SDFDsoon to be defined) from whence it was called. Values for output
parameters, if any, are then made available for use by the caller.

A synchronous service is specified using the same tools we use to specify an action: either by means of a
DFD (known as a synchronous service DFD, or SDFD) or in some action specification language. Figure
2.1 shows a schematic rendering of an SDFD.

Synch
Return

input parameters

output parameters

output parameters

return coordinate

Figure 2.1: An SDFD in schematic form.

The rules for specifying a synchronous service are analogous to those used to specify an action. In
particular:

• Each synchronous service must be assigned an identifier unique within the domain. By
convention, we name the synchronous services S1, S2, etc. The synchronous service identifier is
analogous to the identifier for an action (object.state number).

• All processes on an SDFD must be legal OOA processes: accessors, event generators, tests,
transformations, or wormholes.

• Each synchronous service must have a meaning (analogous to the meaning of a state): a name
that describes the function carried out by the service.

• A synchronous service may have multiple input parameters. On an SDFD, the input parameters
appear like event data items on an ADFD: they are shown on data flows from nowhere.

• A synchronous service always has an input parametersupplied by the architectureof type
return coordinate. This parameter is used to return data to the caller.

2The architect has a slightly different perspective on how control is passed between the caller and the
synchronous service. This is described in Bridges and Wormholes.

version 960801 3 syncserv.doc
 Copyright 1996, Project Technology, Inc. All rights reserved.

• A synchronous service may have multiple (or no) output parameters that are to be transmitted to
the caller. On an SDFD, the output parameters appear on data flows that are input to a
synchronous return wormhole: a wormhole whose purpose is to return data to the caller at the
point of invocation. Although the return coordinate is not transmitted to the caller, it must also
appear as an input to the return wormhole.

• The data type of each input and output parameter must be specified.

• If a synchronous service has no output parameters, no synchronous return wormhole appears on
the SDFD because no data is returned to the caller.

These rules are expressed more formally in the extract from the OOA of OOA shown in Figure 2.2.

1. Synchronous Output Item

Spec. (SOIS)

* Synchronous Service ID (R1)
* Output Number
- Object ID (R2)
- Attribute ID (R2)

2. Synchronous Service (SS)

* Synchronous Service ID

3. Attribute (A)

* Object ID
* Attribute ID
- Domain

4. Synchronous Input Item

Spec. (SIIS)

* Synchronous Service ID (R4)
* Input Number
- Object ID (R3)
- Attribute ID (R3)

has output
specified by

R1

specifies
output for

c

specifies
type of

R2

has type of

c

has type
of R3

specifies
type of

c

specifies
input for R4

has input
specified byc

Figure 2.2: Specification of a synchronous service (from the OOA of OOA)

version 960801 4 syncserv.doc
 Copyright 1996, Project Technology, Inc. All rights reserved.

The execution rules for the processes of an SDFD are the same as those for an ADFD:

• A process can execute when all its inputs are available.

• Outputs of a process are available after the process complete executing.

• Input parameters of the SDFD (those shown on data flows from nowhere) are always available.

• Data from data stores is always available.

3. Is a Synchronous Service Really Synchronous?

The Shlaer-Mellor method offers a number of ways of expressing how control is transferred from one unit
of processing to the next: For example, control is transferred from one action to another by means of
events, and control is given to each process on an ADFD or SDFD -- apparently synchronously -- in
accordance with prescribed execution rules. So while we use both synchronous and asynchronous
schemes for transfer of control in the analysis models, it is important to remember that what we are
actually specifying is the order of execution (or, more precisely, constraints on the order of execution),
and not the method of control transfer.

When it comes to implementation, the style of control transfer (synchronous or asynchronous) is
prescribed by the architecture. Hence, a control transfer that was modeled as asynchronous may, in fact,
be implemented as a synchronous invocation, while a synchronous transfer may be implemented
asynchronously.

Acknowledgments. The initial concept of a synchronous service was developed by Ian Wilkie, David
Walker, Chris Raistrick, Adrian King, Mike Clarke, and Colin Carter of Kennedy-Carter (U.K.). We are
pleased to acknowledge here their contributions to this as well as other aspects of the Shlaer-Mellor
method.

version 960801 5 syncserv.doc
 Copyright 1996, Project Technology, Inc. All rights reserved.

